Using Hadoop to Expand Data Warehousing

Mike Peterson
VP of Platforms and Data Architecture, Neustar

Feb 28, 2013
Why do this?

Transforming to an Information and Analytics Company

We needed to capture ALL the data

We had to do this and strive to keep the effective cost of a TB under $250

We decided to commit to Open Source
The Original Business Case

100 TB of INCREMENTAL Data Storage

3 Year Cost

Millions US $

- **Hadoop Big Data**: $0.2
- **Netezza**: $6.3
- **Teradata**: $9.6
- **Oracle**: $9.6
Big Data Warehouse

Challenges
- Cost to store unstructured data
- Poor response time to changing BI needs
- Data Warehouse access for departments

Goals
- Integrate unstructured data with EDW
- Predictive analytics based on data science
- Data Governance in place to manage access
Technology Evolution Goals

» New data platforms unlock innovation
» Not just package implementation
» More open source technology
» Rethink assumptions
» Increase technology skills
» Focus data teams
Working Together – You need partners to succeed

» Thought Leaders in how
» Teach not just do
» Work at the executive level

» Expertise in Technologies
» Trusted partner
» Collaborative Teams

» Open source leader
» Invested in client success
» Price/performance
QFS – Our most recent addition

» Benefits to QFS
 » HDFS best practice is 3X replication
 » QFS give equivalent protection from Data Loss with a 1.5X replication factor.
 » Neustar nearly doubled the retention period of our largest data source (from 1 year to 2 years) with limited integration effort and no incremental Hardware Cost
 » QFS has provided a 30% improvement in Write performance and ~ 10% improvement in Read performance over HDFS
 » QFS was based on the Kosmos File System (KFS)
 » Uses “Reed- Salomon encoding” which is effectively Software Raid
 » QFS creates 9 stripes and can reconstruct the data from any 6 stripes
 » Been using QFS under Hadoop since early December 2012. It has been very stable

» Some trade offs
 » Need to implement with 10Gbit switching since QFS moves away from HDFS’s “localization” of Data
 » Group permissions work significantly different than HDFS
Our Architecture

Source Data Layer
- Product 1
- Product 2
- Product 3
- Product 4
- Product 5
- External Data

Transform / Integration Layer
- Collect
- Transform
- Integrate
- Load

Storage / Processing Layer
- Higher Latency
 - Hadoop EcoSystem
 - Use both HDFS and CFS
 - "Batch" Processing
 - Load Latency: 2 minutes to 1 day
 - Response times: 30 sec to hours depending on range of data
 - Size: 1.3 PB usable (3 PB raw)
 - Scalable: 10s to 100s of PB
 - 100% capture
 - Data Retention:
 - Detailed Transactions - 1-2 years
 - Aggregates - many years as required

- Low Latency
 - Parallelize Processing
 - Load Latency: 10 seconds to 1 day
 - Response times: less than 5 seconds (often sub second)
 - Size: 50 TB usable
 - Scalable: 200 TB
 - 1% Sampling and Aggregated data
 - Data Retention:
 - Detailed Transactions - 90 days
 - Aggregates - 15-24 months

- "Real Time / Near Real Time"
 - GreenPlum (2 socket - free version)
 - Load Latency: 2 seconds
 - Response times: usually sub second
 - Size: 3.5 TB
 - 1% Sampling and Aggregated data
 - Data Retention:
 - Detailed Transactions - 21 days

Access Layer
- SQL
- Hive
- Pig
- Mahout
- MapReduce
- Visualization (Tableau)
- Restful API (Templeton)
- Revolution R
- Talend

Data Consumers
- Customer – Extend Product
- New Data Products
- Neustar Applications
- Data Scientists
- Business Analyst
- Operations
Hadoop Cluster Q4 2012

Configuration:
» 128 Data Nodes (SuperMicro Fat Twin) + Primary and Backup Name Node
» Hortonworks Hadoop Distribution
» Will utilize both HDFS and QFS (Quantcast File System)
 » QFS based on Open Source KFS (Kosmos File System)
 » QFS used initially for the largest data source (DNS queries)

Each Data node:
» OS: centOS 6.3
» 2 sockets / 8 cores per socket
 » 2080 total cores
» 64 GB memory
 » 8.3 TB total memory
» 8 - 3TB SATA drives / node
 » 3 PB of raw storage
 » 1.5 PB of “usable” storage
» 10 Gbit Ethernet
Postgres Cluster Q4 2012

Configuration:
» 9 Database servers (SuperMicro)
» Customized Stato / Postgres (forked Postgres 9.0.3)

Database nodes:
» OS: centOS 6.3
» 2 sockets / 8 core per socket
 » 144 total cores
» 128 GB memory / Node
 » 1 TB total memory
» 16 - 3TB SATA drives per server
 » Raid 6
 » Total usable storage in cluster is 345 TB
» LSI Cachecade controller for database acceleration
 » 2 - 500 MB SSD
 » IO improvement cut server count in half
» 10Gbit Ethernet
Open Source Successes

Created a +1 Data Capture Platform with Hadoop
 » Initial investment of 500K

Committed to the Hortonworks Suite
 » Staying true to open source

Migrated Netezza Data Warehouse to Postgres
 » Eliminated $400K of annual support cost and $3 MM for a “Tech Refresh”

Migrated Oracle Data Warehouse to Postgres
 » Eliminated 48 Oracle Licenses and associated support

Bulk of ETL Migration was performed with Impetus (off-shore partner)
 » 7 years worth of code was migrated in 9 months
 » 10 Impetus resources
System Scale

» Query volume is ramping
 » 10,000 Map Reduce processes/day
» Ingesting over 40B rows a day
 » 1.5TB with 7x compression
» Storage utilization at 60%
» Core utilization spikes when processing Machine Learning Algorithms
» 100% capture of multiple large product data sets
By the Numbers – over last 2 years

Total Cost of Ownership

Cost Savings: 3 to 4 MM

Thousands

2012 2013 2014 2015

Open Source DB Hadoop Traditional
Challenges and Lessons

» Open Source is a commitment to your technologist
» DevOps is fuzzy in practice
» Commodity components break and aren’t supported
» Storage still isn’t free
» It takes more time to change attitudes than technology
» It is ok to try some scary things (like QFS)
» Data Science
» All that said, we are having a lot of fun