What's a customer worth?

Roberto Medri

@paradosso
Some Etsy numbers

$525M Gross Merchandise Sales in 2011
19,000,000 members
800,000 active shops
15,000,000 items for sale
1.4B pageviews per month
~2M iPhone app downloads
This talk

What Customer Lifetime Value (CLV) is

A stochastic approach to estimating CLV

How we act against CLV at Etsy
What CLV is
What CLV is

Customer Lifetime Value in the open

“I know the customer lifetime value of my business is $200, so that's how much I can spend to acquire a customer”
What CLV is

Customer Lifetime Value
in the open

“I know the customer lifetime value of my business is $200, so that’s how much I can spend to acquire a customer”

How many things are wrong with this?
What CLV is

Let me count the ways

1. Not all customers have the same CLV
What CLV is

Let me count the ways

1. **Not all customers have the same CLV**
2. CLV is a forward-looking concept, you can't *know* how much it is
What CLV is

Let me count the ways

1. Not all customers have the same CLV
2. CLV is a forward-looking concept, you can't know how much it is
3. What we are really interested in is Residual Lifetime Value (RLV), not past spend
What CLV is

Let me count the ways

1. **Not all customers have the same CLV**
2. CLV is a forward-looking concept, you can't *know* how much it is
3. What we are really interested in is Residual Lifetime Value (RLV), not past spend
4. Comparing a future, uncertain quantity (CLV) to a current, certain one (CPA)
What CLV is

Segmentation

Demographics?
What CLV is

Segmentation

Demographics alone?
What CLV is

Segmentation: Behavior first

Transaction log

Frequency and Recency
What CLV is

A definition

The present value of the expected sum of discounted cash flows of an individual customer.

Individual-level estimates:

$E(\text{transactions})$ over next k time periods
$E(\$) \text{ over next } k \text{ time periods}$
$P(\text{returning})$

...
Estimating CLV
Estimating Lifetime Value

A checklist

1. What’s the objective or the decision?
2. What do we want to model?
3. How do we model the behavior?
4. Deriving the mixture model
5. Fit the model to existing data
6. Predict
7. Check
8. Act upon your findings
Estimating Lifetime Value

1. Objective

Model predictive statistics around future spend (RLV), in order to drive, e.g.:

Acquisition/Retention resource allocation

Individually targeted actions
Estimating Lifetime Value

2. What we want to Model

Future spend at the individual level

How many transaction/money will Alistair Croll spend over the next 2 years?
Estimating Lifetime Value

3. How we want to model it

At every moment, customer flips two coins:

The first coin determines if the customer lives or dies (e.g. forgets about Etsy).

The second coin determines if she buys or not.
Estimating Lifetime Value

4. How we want to model it

Customers have *their own, individual* live/die probabilities

Customers have *their own, individual* buy/not buy probabilities

Everyone has two unique coins.
Estimating Lifetime Value

4. Nasty Math

Survival process: exponential (one parameter!), latent parameters distributed gamma (two parameters)

Transaction process: Poisson process, latent parameters distributed gamma (two parameters)

Four parameters: fits in Excel.
Estimating Lifetime Value

5. Fit the model

Solve the double integral
MLE (maximize log likelihood)
Estimating Lifetime Value

Fit the model

Excel

R (Buy Til You Die library)

Python / Cython
Estimating Lifetime Value

Predict

Pareto/NBD predicts the discounted expected number of future transactions

Multiply by the average monetary value of transaction and margin to get RLV
Estimating Lifetime Value

Conditional Expectations
Estimating Lifetime Value

Isovalue RF Curves
Estimating Lifetime Value
Segmentation and Allocation

Bin recency and frequency for behavioral-based segmentation

<table>
<thead>
<tr>
<th>Recency</th>
<th>Frequency</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=0</td>
<td>0</td>
<td>$4.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M=1</td>
<td>1</td>
<td>$6.39</td>
<td>$20.52</td>
<td>$25.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$7.30</td>
<td>$31.27</td>
<td>$41.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$4.54</td>
<td>$48.74</td>
<td>$109.32</td>
<td></td>
</tr>
<tr>
<td>M=2</td>
<td>1</td>
<td>$9.02</td>
<td>$28.90</td>
<td>$34.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$9.92</td>
<td>$48.67</td>
<td>$62.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$5.23</td>
<td>$77.85</td>
<td>$208.85</td>
<td></td>
</tr>
<tr>
<td>M=3</td>
<td>1</td>
<td>$16.65</td>
<td>$53.20</td>
<td>$65.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$22.15</td>
<td>$91.09</td>
<td>$120.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$10.28</td>
<td>$140.26</td>
<td>$434.95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recency</th>
<th>Frequency</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=0</td>
<td>0</td>
<td>$53,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M=1</td>
<td>1</td>
<td>$7,700</td>
<td>$9,900</td>
<td>$1,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$2,800</td>
<td>$15,300</td>
<td>$17,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$300</td>
<td>$12,500</td>
<td>$52,900</td>
<td></td>
</tr>
<tr>
<td>M=2</td>
<td>1</td>
<td>$5,900</td>
<td>$7,600</td>
<td>$2,300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$3,600</td>
<td>$26,500</td>
<td>$25,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$500</td>
<td>$37,200</td>
<td>$203,000</td>
<td></td>
</tr>
<tr>
<td>M=3</td>
<td>1</td>
<td>$11,300</td>
<td>$19,700</td>
<td>$3,700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$7,300</td>
<td>$45,900</td>
<td>$47,900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$1,000</td>
<td>$62,700</td>
<td>$414,900</td>
<td></td>
</tr>
</tbody>
</table>
Estimating Lifetime Value

Check your model

Don’t use (only) in-sample fit

Out of sample fit
Divvy up your training set
Remove random observations

Simplicity and Consistency of the story
Estimating Lifetime Value

Who has the highest RLV?

A

B

Same recency
Frequency A > Frequency B
Estimating Lifetime Value

Who has the highest RLV?

A

B

B has higher RLV

A has higher propensity and thus more likely to have ‘died’
Estimating Lifetime Value

Covariates

Other information we have about customers can be brought in as a covariate

Is the customer mobile?
What categories they buy in?
Seasonality
Media/PR event
Etc.
Acting on CLV
Acting on CLV
Etsy Lifetime Value Stack

Relational Database

Simple Query

Transaction Log

Automated upload script

Fitted Dataset

Offline

Online Dashboards

Online

Ideas

Ideas

Offline

Analyst

Tuesday, 23 October 12
Acting on CLV

Customers of interest

Who are your best customers?

Recent high-profile customers

Old-time best customers about to churn or just churned
Acting on CLV

Retention campaigns

Sent an email to 7.5M customers who hadn’t bought in 60 days or more

Set aside a 5% control group

Emailed customer bought 11¢ more over the next 15 days vs. control (p < .05)

Made $800K GMS directly, plus raised their RLV, total expected benefit $4-6M GMS
Acting on CLV

Future: Longitudinal customer treatments

Keep track of all treatments/controls at the customer level, together with their purchasing patterns

Trying bandit strategies in marketing (explore/exploit)
Acting on CLV

Fun stuff with fitted CLV datasets

Sum all RLV expectations across customers to value the company.

Look up and talk to your best customers.
Acting on CLV

Behavioral customer segmentation

Bronze/silver customers: reinforcement, nudges

Gold customers: premium services

Platinum customers: recognition
Three things to remember from this talk

Customers have their own individual CLV. There’s no one figure.

Don’t use in-sample fit to judge a marketing model.

Who are your best customers? Really, what are their names?
QUESTIONS?

Office Hours: tomorrow (Wed), 2:30-3pm, Rhinelander Room.

Roberto Medri @paradosso