Test-Driven Ul
Development

SHIFI™



Who, what, and why?

Joakim Recht
Senior Code Monkey at Tradeshift

"Deploying before lunch”

TRADE



Common methodologies

CEO-Driven Development
Bug-Driven Development
Test-Driven Development

Behavior-Driven Development

TRADE



A couple of words on BDD

« “Successor” of test-driven development

- Do more than just test your interface
methods

— Only test one aspect
- Name the test properly

- Explain what are the preconditions and
the postconditions

- Make the test readable by non-techs

TRADE



The state of Ul testing

Deeply unscientific




- Non-existing

- Non-maintained

- Non-maintainable

TRADESHIFIT



Wouldn't it be niceif...

You actually had a Ul test suite?
The test suite was maintainable?

You ran the tests automatically on all
commits?

You didn't deploy regressions?

Everybody ran the tests?

TRADE



The Deployment Plpelme

All tests run automatically

No merge to master if
anything is failing

No deploy if anything is
failing

Tests are optional, but only
if there's a reason

Production

F_rontend

Backend

Proxy
Payment
Si

Ai

Conversions

Integration-Test

TRADESHIFIT



I also want this... but how?




3 generations of Ul testing

- 1st: Basic tests running, non-automated,
messy

- 2nd: Larger coverage, automated, live
view, got messy

» 3rd: Much more structure, even larger
coverage, maintainable abstractions,
parallelization

TRADE



The main technologies

Groovy (but your app doesn't have to be
in Groovy)

Selenium — remote-control browsers
Geb — Write concise Selenium code

Spock — Write understandable tests

TRADE



Groovy ‘%’

- Dynamic language for the JVM
- Mature and extremely powerful
- Easy to learn and write

(also easy to create write-only code)

TRADE



Selenium

Java-based framework for remote-
controlling a browser

Can be used either for recording or for
scripting

Works with all major browsers
Contains the Webdriver API

TRADESHIFIT



Geb

« Groovy-based framework on top of
Selenium

« Makes it much easier to use Selenium
« Introduces more structure to tests

- Page classes and modules
- Uses Spock for specifications

TRADE



Spock

Groovy-based framework for writing
tests

Tests are specifications

Tests become more than just a list of
assertions

Builds on Junit — executable by any CI

TRADE



Let's see some code

FFFFFF



That looked pretty simple?

Unfortunately, there's more




The real challenges

Maintainablility
Stability
Speed

TRADE



Maintainability

. Write testable code

« Create code conventions for
Javascript/HTML/CSS integration

- Treat test code as if it was your production
code

- Don't copy/paste

- Create abstractions to reuse code
- Do BDD

TRADE



Stability

‘Oh, the tests failed?
Be very careful about Ajax Try running them again”

Don't blindly waitFor
Introduce lifecycle hooks
Establish clear rules for accessing HTML from tests

Do not assume anything — all tests should be able to
run in any system state

Most important:

Do not ignore transient failures!

TRADE



Speed

- Running through a browser is inherently slow, so
- Only execute what's necessary for the test
- Use IDs rather than class names in page definitions

- Abstract common operations into helpers, and allow
these to access business logic directly

« Through API or database
 Creating new users, domain objects, etc.
- Parallelize or run in the cloud

TRADE



Stuff that's still not being tested

» Text copy & translations
- Layout and styling
- Interaction design
- Emalil interactions

- Crazy interactions — click 3 times on a
button, paste in a Word document,
increase font size by 500%, etc.

TRADE



Thank you
Questions?

Geb: http://gebish.org
Spock: http://code.google.com/p/spock/

jre@tradeshift.com
@joakimrecht
http://gplus.to/recht
http://tradeshift.com/blog/

SHIFI™



	Slide 1
	What is UX?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Standard slide
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

