
Test-Driven UI
Development

OSCON 2012

Who, what, and why?

Joakim Recht

 Senior Code Monkey at Tradeshift

“Deploying before lunch”

Common methodologies

• CEO-Driven Development

• Bug-Driven Development

• Test-Driven Development

• Behavior-Driven Development

A couple of words on BDD

• “Successor” of test-driven development

• Do more than just test your interface
methods

– Only test one aspect
– Name the test properly
– Explain what are the preconditions and

the postconditions
– Make the test readable by non-techs

The state of UI testing

Deeply unscientific

• Non-existing

• Non-maintained

• Non-maintainable

Wouldn't it be nice if...

• You actually had a UI test suite?

• The test suite was maintainable?

• You ran the tests automatically on all
commits?

• You didn't deploy regressions?

• Everybody ran the tests?

The Deployment Pipeline

• All tests run automatically

• No merge to master if
anything is failing

• No deploy if anything is
failing

• Tests are optional, but only
if there's a reason

I also want this... but how?

3 generations of UI testing

• 1st: Basic tests running, non-automated,
messy

• 2nd: Larger coverage, automated, live
view, got messy

• 3rd: Much more structure, even larger
coverage, maintainable abstractions,
parallelization

The main technologies

• Groovy (but your app doesn't have to be
in Groovy)

• Selenium – remote-control browsers

• Geb – Write concise Selenium code

• Spock – Write understandable tests

Groovy

• Dynamic language for the JVM

• Mature and extremely powerful

• Easy to learn and write

(also easy to create write-only code)

Selenium

• Java-based framework for remote-
controlling a browser

• Can be used either for recording or for
scripting

• Works with all major browsers

• Contains the Webdriver API

Geb

• Groovy-based framework on top of
Selenium

• Makes it much easier to use Selenium

• Introduces more structure to tests

– Page classes and modules
– Uses Spock for specifications

Spock

• Groovy-based framework for writing
tests

• Tests are specifications

• Tests become more than just a list of
assertions

• Builds on Junit – executable by any CI

Let's see some code

That looked pretty simple?

Unfortunately, there's more

The real challenges

Maintainablility
Stability

Speed

Maintainability

• Write testable code

• Create code conventions for
Javascript/HTML/CSS integration

• Treat test code as if it was your production
code

– Don't copy/paste
– Create abstractions to reuse code
– Do BDD

Stability

• Be very careful about Ajax

• Don't blindly waitFor

• Introduce lifecycle hooks

• Establish clear rules for accessing HTML from tests

• Do not assume anything – all tests should be able to
run in any system state

Most important:

Do not ignore transient failures!

“Oh, the tests failed?

Try running them again”

Speed

• Running through a browser is inherently slow, so

– Only execute what's necessary for the test
– Use IDs rather than class names in page definitions
– Abstract common operations into helpers, and allow

these to access business logic directly
● Through API or database
● Creating new users, domain objects, etc.

– Parallelize or run in the cloud

Stuff that's still not being tested

• Text copy & translations

• Layout and styling

• Interaction design

• Email interactions

• Crazy interactions – click 3 times on a
button, paste in a Word document,
increase font size by 500%, etc.

Thank you
Questions?

jre@tradeshift.com

@joakimrecht

http://gplus.to/recht

http://tradeshift.com/blog/

Geb: http://gebish.org

Spock: http://code.google.com/p/spock/

	Slide 1
	What is UX?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Standard slide
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

