Performance vs
Scalability

Blocking or non-blocking code, code complexity
and architectural blocks to avoid code complexity

$whoami

work: http://locaweb.com

site: hitp:///co.cc

blog: http://zenmachine.wordpress.com

code: http://github.com/gleicon

RestMQ: http://restmqg.com

twitter: @gleicon

O REILLY*

THICK AS A BRICK

JUDGES DISQUALIFY “LITTLE
MILTON"IN lASI MINUTE RUMPUS

FLUTE CONCERT
AT

PARRIT
" ROOMS

A concert by the Hyde Close
Flute and Cello Ensemble was
held in the Parrit Rooms, Flood
Street, St. Cleve, on Tuesday
night. A sensitive and, dare
one say, passionate, perfor-
mance was rendered by the five
musicians but was spoilt at
times by an exceedingly rest-
less and shifyt audience. The
ensemble 15 well known and
liked for its spirited and extro-
verted style. but some of the
quieter and more meaningful
passages were lost on an other-
wise enthusiastic audience
The music included two sco=
tions of the Tycho Asavrick
Suite in F major by Jeffrey
Teller and a contemporary
piece by Ena Sanderone. | SM

THE SOCIETY FOR LITERARY ADVANCEMENT AND
GESTATION, (SLAG), announced their decision
late last night to disqualify eight year old
prizewinner Gerald (Little Milton) Bostock
following the hundreds of protests and threats
received after the reading of his epic poem
“Thick as a Brick™ on B.B.C. Television last

Monday night.

A hastily reconvened of Judges accepted the decision by
four leading child psychiatrists that the boy's mind was seriously
unbalanced and that his work was a product of an “‘extremely
unwholesome attitude towards life, his God and Country™.
Bostock was recommended for chiatric treatment following
examination ‘‘without delay'’. RZ prize will now be pre-
sented to runner up Mary Whiteyard (aged ll) for her essay on
Christian ethics entitled, ‘“He died to save the little Children"'.

four years ago from Man-
chester when Mr. Bostock

HEAD INJURY

Fifty-two year old Sarsh
Pickles of the High Street,
St. Cleve, cut her head when
she tripped over while walking
in the High Street, St. Cleve.

dise

DIGITAL AUDIO

The Literary Competition,
which was for children aged
from 7 to 16 years of age, was
sponsored by leading national
newspapers and received thou-
sands of entnies from schools
allover Britain. Mr. Humphrey
Martin, the Headmaster of
Moordale Primary School
said Gerald, nicknamed
“Little Milton™ by his English
master because of his poetic
ability, was mentally advanced
for his age, although inclined
on occasions to obscure and
verbose assertions which led
him to being somewhat un
-popular with his schoolmates
He went on to say that with-
out doubt the child had a great
future academically and that
his progress was unsurpassed
in the history of Moordale
Primary. Gerald and his
parents moved to St. Cleve

decided for health reasons to
live away from the City. David
Bostock now does occasional
gardening work while his wife
Daphne is well known to the
Congregation of St. Cleve
Panish Church for her activi-
ties in social work and her
wonderful buffet luncheon at
the fete last Saturday. Well
done, Daphne! Mr. Bostock
said this morning of *“Little
Milton's" disqualification,
“We are heartbroken at the
way the Judges changed their
minds. and the loss of the prize
money and scholarship means
we shall find difficulty in pay-
ing the instalments on Gerald's
Encyclopaedia Britannica. |
shall have to do Dr. Munson's
roses next week after all™
When he heard of the decision
against him, Gerald went to

Flashback to last week's presenta rion dinner held in Geraid's honour by the Commirttee of the St. Cleve

District Art and Literary Society at rhe Parrit Rooms. Left to right

Lord Chive Polly’ Parritt, Mr. and Mes

Bostock, Gerald Bosrock, Lady Parrit, Julia, Gerald's chum with whom he writes poems

his room and locked the door.

“Mrs. Bostock and | are sorely

vexed at the way this has
turned out™, said Mr. Bostock
of No. 6 Pollitt Close, St.
Cleve

Many local residemis are
also annoyed and hurt by the
news and as some consolation

to Gerald and his parenis the
St. Cleve Chronicle primis the
full text of the disqualified
poem this week on page 7

R
Many of the viewers who

heard Gerald read his work on
the “Young Arts'’ programme

on B.B.C. 2 felt that it was not
one poem but a series of separ-
ate poems put together merely
to appear impressive. Many of
the viewers' complaints were
centred around “Little
Milton's™ use of a four-letter

(Continued on Pare 4. Col. 6)

Required Listening

“But your new shoes are worn at the heels
and your suntan does rapidly peel

and your wise men don't know how it feels
to be thick as a brick.”

O REILLY*

CQOIl

open source convention

Objective

= To discuss how scalability sometimes get confused with performance when speaking about
non-blocking /O

= To show how most of languages have frameworks to deal with non-blocking 1/O
= Examine an example in different languages and the basic blocks of these frameworks

= Discuss that this programming model is mandatory, not even migrate from Blocking to non-
blocking I/O is needed for most cases. The best solution may not lie in code complexity, but
In the right architecture.

= Discuss a bit about Message Queues, Cache and Redis

O REILLY*

Basics

* Asynchronous I/O - Posix aio_*

* Non-Blocking |/O - Select, Poll, EPoll, Kqueue

» Reactor - Pattern for multiplexing 1/O

* Future Programming — Generators and Deferreds
* Event Emitters

* The c10k problem - http://www.kegel.com/c10k.html

O REILLY*

Scalability, not performance

BULLETS GET ATTRACTED TO THE
MAGNET AND MISS YOU
COMPLETELY

NEW LOW-COST 100% BULLETPROOF /\
ARMOR/HELMET

HOW HAS THE ARMY NOT THOUGHT OF
THIS YET?

O REILLY*

Scalability, not performance

. Performance: same work with less resources

. Scalabllity: more work with added resources

. Scientific measures for performance: How much and How fast
. Tricks to improve performance can hurt scalabillity.

. Non-Blocking /O is not an optimization for Performance

. The time spent waiting for an external resource can be used to other tasks, given a
known introduced complexity in the code.

/. Most of time architectural changes can avoid deeper code changes

o O K WO N -

(1,2,3,4 - Goetz et al, Java Concurrency in Practice)
(5,6,7 - Lucindo, R. http://slidesha.re/aYz4Mk, wording on 6 is mine)

O REILLY*

JAVA concurrency in practice

BRIAN GOETZ vy

WITH TiMm PEIERLS, JOSHUA BLOCH,
JOSEPH BOWBEER, DAVID HOLMES,
AND DOuUuG LEA

O REILLY"

CQOIl

open source convention

Blocking code example - Download a list of URLs

Ruby

require 'open-uri'

urls = ['http://www.google.com', 'http://yahoo.com']
urls.each { lul puts open(u).read }

Python
tmport urllib2

urls = ["http://www.google.com', 'http://www.yahoo.com']
for u in urls: print urllib2.urlopen(u).read()

O REILLY*

Benchmark

= Compare blocking and non-blocking Ruby code to download a list of URLs
= A naive example to examine the effects of both paradigms on the final code
= The ‘algorithm’ to download an URL is (should be) the same in both versions

= |f we had more cores, or more powerful cores, it should not affect the performance of a single
download (I/O bound operation)

O REILLY*

Benchmark - Blocking

require 'open-uri’

urls = open(ARGV.f1irst).read.split
urls.each { lul

begln

puts open(u).read
rescue

puts '404 - #{u}’
end

¥

O REILLY*

Benchmark — Blocking + Threads

reguire 'open-uri’

threads = []
urls = open(ARGV.f1irst).read.split
urls.each { lul

threads << Thread.new(u) { |t

begln

puts open(t).read
rescue

puts '404 - #{t}'
end
3

}

threads.each { [tl t.join() }

O REILLY*

Benchmark - Non-Blocking (Eventmachine based)

require 'rubygems'’
reqguire 'eventmachine'
require 'em-http’

urls = open(ARGV.first).read.split
pending = urls.size

EventMachine: :run do

urls.each do |ul
defer = EM::HttpRequest.new(u).get :redirects => 1, :timeout => 10

defer.callback do Irl

puts u + ': ' + r.response
pending = 1
EM.stop if pending < 1

end

defer.errback do Imsg, errorl
puts defer.error

pending = 1
EM.stop 1f pending < 1
end
end
end

O REILLY*

CQOIl

open source convention

Benchmark - Results

2 urls

Blocking I/0O: 0m4.061s

Blocking I/O + Threads: 0m2.914s
Non-blocking I/0O: 0m1.027s

100 urls

Blocking 1/0O: 2m46.769s

Blocking I/O + Threads: 0m33.722s
Non-blocking 1/0O: 0m11.495s

O REILLY*

Python and Twisted

from twisted.internet import reactor, defer
from twisted.web.client import getPage
from twisted.internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl = getPage('http://www.google.com")
d2 = getPage('http://yahoo.com")
dl = DeferredList([dl, d2])
dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks

def test2():
dl = yield getPage('http://www.google.com")
d2 = yield getPage('http://yahoo.com")
print '%s\n¥%s' % (dl1, d2)

test()
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and Twisted — callback styles

from twisted.internet import reactor, defer
from twisted.web.client import getPage
from twisted.1internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl = getPage('http://www.google.com')
d2 = getPage('http://yahoo.com") EXleClt

dl = DeferredList([dl, d2])
dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks

def test2():
dl = yield getPage('http://www.google.com') _
d2 = yield getPage('http://yahoo.com") Inline
print "%s\n¥s' % (dl, d2)

tests
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and Twisted — Generators

from twisted.internet import reactor, defer
from twisted.web.client import|getPage
from twisted.internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl = |(getPage('http://www.google.com")
d2 - |getPage(" http: //yahoo. com') Generators
dl = DeferredList([dl, d2])
dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks

def test2():
dl = yield getPage('http://www.google.com")
d2 = yield getPage('http://yahoo.com")
print "%s\n¥%s' % (dl, d2)

test()
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and Twisted — Deferreds

from twisted.internet import reactor, defer
from twisted.web.client import getPage
from twisted.internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl | getPage('http://www.google.com")
Deferreds d2 = getPage('http://yahoo.com")
dl | DeferredList([dl, d2])

dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks
def test2():

dl yield getPage('http://www.google.com")
NOt Deferreds d2 yield getPage('http://yahoo.com")

print "%s\n¥%s' % (dl, d2)

test()
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and Twisted — Callbacks

Callbacks

from twisted.internet import reactor, defer
from twisted.web.client import getPage
from twisted.internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl = getPage('http://www.google.com")
d2 = getPage('http://yahoo.com")
dl = DeferredList([dl, d2])
dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks

def test2():
dl = yield getPage('http://www.google.com")
d2 = yield getPage('http://yahoo.com")
print "%s\n¥%s' % (dl, d2)

test()
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and Twisted — Inline callbacks

Results from getPage

from twisted.internet import reactor, defer
from twisted.web.client import getPage
from twisted.internet.defer import DeferredList

def listCallback(results):
orint results

def finish(ign):
reactor.stop()

def test():
dl = getPage('http://www.google.com")
d2 = getPage('http://yahoo.com")
dl = DeferredList([dl, d2])
dl.addCallback(listCallback)
dl.addCallback(finish)

@defer.inlineCallbacks
def test2():

dl = yield getPage('http://www.google.com")
d2 = yield getPage('http://yahoo.com")

print "%s\n¥%s' % (dl, d2)

test()
test2()
reactor.run()

O REILLY*

CQOIl

open source convention

Python and GEvent

Lmport gevent
from gevent import monkey

Monkey patch the socket module
monkey.patch_all()

urls = ["http://www.google.com', "http://www.yahoo.com', "http://reallyslowsite.com/10"]

tmport urllib?2

def fetch(Curl):
data = urllib2.urlopenCurl).read()
orint "%s: %s' % (url, data)

jobs = [gevent.spawn(fetch, url) for url in urls]

gevent.joinall(jobs)

O REILLY*

CQOIl

open source conven tion

Python and GEvent

Lmport gevent
from gevent import monkey

monkey.patch_all()

urls = ["http://www.google.com', "http://www.yahoo.com', "http://reallyslowsite.com/10"]
tmport urllib?2

def fetch(Curl):

data = urllib2.urlopenCurl).read()
orint "%s: %s' % (url, data)

jobs = [gevent.spawn(fetch, url) for url in urls]

Create and start greenlets
gevent.joinall(jobs)

O REILLY*

CQOIl

open source conven tion

Ruby and EventMachine

require 'rubygems'’
require 'eventmachine’
require 'em-http'’

urls = open(ARGV.first).read.split
pending = urls.size

EventMachine: :run do

urls.each do |ul
defer = EM: :HttpRequest.new(u).get :redirects => 1, :timeout => 10

defer.callback do |rl

puts u + ': ' + r.response
pending -= 1
EM.stop 1if pending < 1

end

defer.errback do Imsg, error|
puts defer.error

pending -= 1
EM.stop 1f pending < 1
end
end

end

O REILLY*

CQOIl

open source convention

Ruby and EventMachine - Generators

require 'rubygems'’
require 'eventmachine'
require 'em-http'

urls = open(ARGV.first).read.split
pending = urls.size

EventMachine: :run do

urls.each do |u
defer = EM: :HttpRequest.new(u).get :redirects => 1, :timeout => 10

Generator

defer.callback do |rl
puts u + ': ' + r.response

pending -= 1
EM.stop 1if pending < 1
end

defer.errback do Imsg, errorl
puts defer.error

pending -= 1
EM.stop 1f pending < 1
end

end
end

O REILLY*

CQOIl

open source convention

Ruby and EventMachine - Deferreds

require 'rubygems'’
reqguire 'eventmachine’
require 'em-http'’

urls = open(ARGV.first).read.split
pending = urls.size

EventMachine: :run do

u h do |ul
Sort of deferred defer ‘= EM: :HttpRequest.new(u).get :redirects => 1, :timeout => 10

defer.callback do |rl

puts u + ': ' + r.response
pending -= 1
EM.stop 1if pending < 1

end

defer.errback do Imsg, error|
puts defer.error

pending -= 1
EM.stop 1f pending < 1
end
end

end

O REILLY*

CQOIl

open source convention

Ruby and EventMachine - Callbacks

require 'rubygems'’
require 'eventmachine'
require 'em-http'

urls = open(ARGV.f1irst).read.split
pending = urls.size

EventMachine: :run do

urls.each do |ul
defer = EM: :HttpRequest.new(u).get :redirects => 1, :timeout => 10

defer.callback do |rl
puts u + ': ' + r.response

pending -= 1
EM.stop if pending < 1

Success and error | end

callbacks defer.errback do Imsg, errorl
puts defer.error
pending = 1
EM.stop 1if pending < 1
end
end
end

O REILLY*

CQOIl

open source convention

Ruby, EventMachine and EM-Synchrony

require 'em-synchrony’
require 'em-synchrony/em-http’

EM. synchrony cdo

dl
d2

EM: :HttpRequest.new("http://www.google.com").get
EM: :HttpRequest.new("http://www.yahoo.com").get

puts 'Google:
puts 'Yahoo

+ dl.response
+ d2.response

EM.stop

end

O REILLY*

Ruby, EventMachine and EM-Synchrony

require 'em-synchrony’
require 'em-synchrony/em-http’

EM. synchrony do

dl
d2

EM: :HttpRequest.new("http://www.google.com").get

EM: :HttpRequest.new("http://www.yahoo.com").get Inline results

puts 'Google:
puts 'Yahoo

+ dl.response
+ d2.response

EM.stop

end

O REILLY*

Node.js

var http = require('http');

var dl = http.createClient(80, "www.google.com')
.request('GET", /", {"host': "www.google.com'});

var d2 = http.createClient(80, "www.yahoo.com")
.request('GET", /", {"host': "www.yahoo.com'});

var g_content;
var y_content;

dl.on('response’, function (res) {
res.on('data’, function (chunk) { g_content = g_content + chunk; });
res.on('end’, function() { console.log("Google: " + g_content); });

P

d2.on('response’, function (res) {
res.on('data’, function (chunk) { y_content = y_content + chunk; });
res.on('end’, function() { console.log("Yahoo: " + y_content);});

P

dl.end();
d2.end();

O REILLY*

CQOIl

open source convention

Node.js — Creating and ending the requests

var http = require('http');

var dl = http.createClient(80, 'www.google.com')
.request('GET', '/', {'host': "www.google.com'});

Start requests

var d2 = http.createClient(80, 'www.yahoo.com')
.request('GET', '/', {'host': "www.yahoo.com'});

var g_content,;
var y_content;

dl.on('response’, function (res) {
res.on('data’, function (chunk) { g_content = g_content + chunk; });
res.on('end’, function() { console.log("Google: " + g_content); });

P

d2.on('response’, function (res) {
res.on('data’, function (chunk) { y_content = y_content + chunk; });
res.on('end’, function() { console.log("Yahoo: " + y_content);});

P

dl.end();
d2.end();

End requests

O REILLY*

CQOIl

open source convention

Node.js — Events handlers and callbacks

var http = require('http');

var dl = http.createClient(8@, "www.google.com")
.request('GET", "/", {"host': "www.google.com'});

var d2 = http.createClient(80, 'www.yahoo.com")
.request('GET", /", {"host': "www.yahoo.com'});

var g_content,;
var y_content;

dl.on('response’, function (res) {
res.on('data’, function (chunk) { g_content = g_content + chunk; });
res.on('end’, function() { console.log("Google: " + g_content); });

P

Response event

d2.on('response', function (res) {
res.on('data’, function (chunk) { y_content = y_content + chunk; });
res.on('end’', function() { console.log("Yahoo: " + y_content);});

P

dl.end();
d2.end();

O REILLY*

CQOIl

open source convention

Erlang

-module(erlang_httpclient_example).
-export([start/0, stop/0, getpage/1]).

start() ->
10:format("Parent pid: ~w~n", [self()]),
1nets:start(),
Urls = ["http://www.google.com”, "http://www.yahoo.com"],

Pids = lists:map(fun(U)-> spawn(fun() -> getpage(U) end) end, Urls).

stop() ->
1nets:stop().

getpage(Url) ->
10:format("Url: ~s (pid: ~w)~n", [Url, self()]),
{ok, {{_Vers, 200, _Rson}, _Hdrs, B}} = httpc:request(get, {Url, [1}, [1, [1),
10:format("Body: ~s~n", [B]).

O REILLY*

Erlang — Spawning one download process per url

-module(erlang_httpclient_example).
-export([start/0, stop/0, getpage/1]).

start() ->
10:format("Parent pid: ~w~n", [self()]),
1nets:start(),
Urls = ["http://www.google.com”, "http://www.yahoo.com"],
Pids = lists:map(fun(U)-> spawn(fun() -> getpage(U) end) end, Urls).

stop() ->
1nets:stop().

getpage(Url) ->
10:format("Url: ~s (pid: ~w)~n", [Url, self()]),
{ok, {{_Vers, 200, _Rson}, _Hdrs, B}} = httpc:request(get, {Url, [1}, [1, [1),
10:format("Body: ~s~n", [B]).

O REILLY*

A reminder of what we wanted to do

O REILLY*

Blocking code example - Download a list of URLs

Ruby

require 'open-uri'

urls = ['http://www.google.com', 'http://yahoo.com']
urls.each { lul puts open(u).read }

Python
tmport urllib2

urls = ["http://www.google.com', 'http://www.yahoo.com']
for u in urls: print urllib2.urlopen(u).read()

O REILLY*

Architectural building blocks

O REILLY*

Message Queues — decoupling downloads

Fetch Page

Fetch Page

Fetch Page

Fetch Page

§ Message Queue

O REILLY*

Message Queues — decoupling db writes on a webservice

Coupled
Database
Frontend < > @
Uncoupled
Message Queue
Frontend Frontend
U jL
9 Replication 9
<3 >
Database Master/Slave Replication is optional Database

O REILLY*

Coupled comments webservice

Recelve and
write to db

require 'rubygems’
require 'sinatra’
require 'mongo’
require 'json’

Lnclude Mongo

DB = Connection.new('localhost’).db 'comments’

CC = DB.collection "osconll’

get /' do
st = CC.find
st.to_a.to_json
end

post '/comment' do
body = params|[:body]
dt = Time.now.ctime
objid = CC.1insert "date”
end

=> dt, "body" => body

O REILLY*

CQOIl

open source conven tion

Message Queue — Comment producer

require 'rubygems'’
require 'sinatra’
require 'mongo’
require 'json’
reqguire 'net/http’
require 'uri’

T

Lnclude Mongo

DB = Connection.new('localhost').db 'comments'
CC = DB.collection "osconll’

get '/' do
st = CC.find
st.to_a.to_json
nad

post '/comment' do
phash = Hash.new
phash[:body] = params[:body]
phash[:date] = Time.now.ctime
res = Net::HTTP.post_form(
URI.parse('http://localhost:8888/g/comments’),
{"'value'=>phash.to_json})
res.body
end

Recelve and
write to queue,
release connection

O REILLY*

CQOIl

open source convention

Message Queue — Comment consumer

require 'rubygems'’
require 'mongo’
require 'json’
require 'uri’
require 'net/http’

Lnclude Mongo

Connection.new('localhost’).db 'comments'
DB.collection 'osconll’

DB
CC

url = URI.parse('http://localhost:8888")

res = Net::HTTP.start(Curl.host, url.port) do |httpl
http.request_get('/c/comments’) do |responsel
response.read_body do |strl
jp = JSON: :parse str Take from queue
jv = JSON: :parse jp['value'] _
objid - CC.insert "date" => jv['date'], "body" => jv['body’'] | a@nd write to db
puts objid
end
end
end

O REILLY*

CQOIl

open source convention

Cache

No Cache

Database

Frontend < >

J

Cached

Database

NS
SN

O REILLY*

CQOIl

open source convention

No cache — code from http://github.com/gleicon/vuvuzelr

def filter_and_replaceCurl)
doc = Nokogiri::HTML open url
eb = Nokogiri::XML::Node.new 'embed', doc
eb['src'] = "http://vuvuzelr.7co.cc/derp.swf’
eb['width'] = "1°
eb["height'] = "1°
eb['wmode'] = 'transparent’
body = doc.at_css 'body’
body << eb
doc.search('img').each do |1l 1['src']= "http://vuvuzelr.7co.cc/vuvuzela.jpg’' enc
doc.to_s
end

O REILLY*

Cache — code from http://github.com/gleicon/vuvuzelr

def filter_and_replace(url)

reddo = Redis.new

u_hash = Digest::MD5.hexdigest url Check if it's on cache
t = reddo.get u_hash Return ifitis

return t 1f t != n1l

doc = Nokogiri::HTML open url
eb = Nokogiri::XML::Node.new 'embed', doc
eb['src’'] = "http://vuvuzelr.7co.cc/derp.swf’
eb['width'] = "1’
eb["height'] = "1°
eb['wnode'] = "transparent'’
body = doc.at_css 'body’
body << eb
doc.search('img').each do |L| 1['src']= "http://vuvuzelr.7co.cc/vuvuzela.jpg' end
meh = doc.to s
reddo.set u_hash, meh Feed the cache and set expiration
reddo.expire u_hash, 180
meh
end

O REILLY*

Redis

= Key/Value store

= Key Is a string, Value can be string, hash, list, set, scored set
= Atomic operations

= Publish/Subscription channels

= Set/Scored Sets operations (union, diff, intersection)

= UUID Generator, Distributed Cache, Message Queue (RestMQ, Resque), Serialized object
storage, throttle control and more at http://rediscookbook.org/

O REILLY*

Q&A

O REILLY*

CQOIl

open source convention

Thanks !

O REILLY*

