
Performance vs 
Scalability 
Blocking or non-blocking code, code complexity 
and architectural blocks to avoid code complexity 



$whoami 
 
 
work: http://locaweb.com 
 
site: http://7co.cc 
 
blog: http://zenmachine.wordpress.com 
 
code: http://github.com/gleicon 
 
RestMQ: http://restmq.com 
 
twitter: @gleicon 



Required Listening 

“But your new shoes are worn at the heels  
 and your suntan does rapidly peel 
 and your wise men don't know how it feels  
 to be thick as a brick.” 



Objective 
 
  To discuss how scalability sometimes get confused with performance when speaking about 

non-blocking I/O 

  To show how most of languages have frameworks to deal with non-blocking I/O 

  Examine an example in different languages and the basic blocks of these frameworks 

  Discuss that this programming model is mandatory, not even migrate from Blocking to non-
blocking I/O is needed for most cases. The best solution may not lie in code complexity, but 
in the right architecture. 

  Discuss a bit about Message Queues, Cache and Redis 



Basics 

• Asynchronous I/O - Posix aio_* 

• Non-Blocking I/O - Select, Poll, EPoll, Kqueue 
 
• Reactor - Pattern for multiplexing I/O 

• Future Programming – Generators and Deferreds 

• Event Emitters  

• The c10k problem - http://www.kegel.com/c10k.html 



Scalability, not performance 



Scalability, not performance 
1.  Performance: same work with less resources 
2.  Scalability: more work with added resources 
3.  Scientific measures for performance: How much and How fast 
4.  Tricks to improve performance can hurt scalability. 
5.  Non-Blocking I/O is not an optimization for Performance 
6.  The time spent waiting for an external resource can be used to other tasks, given a 

known introduced complexity in the code. 
7.  Most of time architectural changes can avoid deeper code changes 

 
(1,2,3,4 - Goetz et al, Java Concurrency in Practice)  
(5,6,7 - Lucindo, R. http://slidesha.re/aYz4Mk, wording on 6 is mine) 
 



JAVA concurrency in practice 



Blocking code example - Download a list of URLs 

Ruby 

Python 



Benchmark 

  Compare blocking and non-blocking Ruby code to download a list of URLs 

  A naive example to examine the effects of both paradigms on the final code 

  The ‘algorithm’ to download an URL is (should be) the same in both versions 

  If we had more cores, or more powerful cores, it should not affect the performance of a single 
download (I/O bound operation) 



Benchmark - Blocking  



Benchmark – Blocking + Threads  



Benchmark - Non-Blocking (Eventmachine based) 



Benchmark - Results 
 
2 urls 
Blocking I/O: 0m4.061s 
Blocking I/O + Threads: 0m2.914s 
Non-blocking I/O: 0m1.027s 
 
 
100 urls 
Blocking I/O: 2m46.769s 
Blocking I/O + Threads: 0m33.722s 
Non-blocking I/O: 0m11.495s 



Python and Twisted 



Python and Twisted – callback styles 

Explicit 

Inline 



Python and Twisted – Generators 

Generators 



Python and Twisted – Deferreds 

Not Deferreds 

Deferreds 



Python and Twisted – Callbacks 

Callbacks 



Python and Twisted – Inline callbacks 

Results from getPage 



Python and GEvent 

Monkey patch the socket module 



Python and GEvent 

Create and start greenlets 



Ruby and EventMachine 



Ruby and EventMachine - Generators 

Generator 



Ruby and EventMachine - Deferreds 

Sort of deferred 



Ruby and EventMachine - Callbacks 

Success and error 
callbacks 



Ruby, EventMachine and EM-Synchrony 



Ruby, EventMachine and EM-Synchrony 

Inline results 



Node.js 



Node.js – Creating and ending the requests 

Start requests 

End requests 



Node.js – Events handlers and callbacks 

Response event 



Erlang 



Erlang – Spawning one download process per url 



A reminder of what we wanted to do 



Blocking code example - Download a list of URLs 

Ruby 

Python 



Architectural building blocks 



Message Queues – decoupling downloads 
Fetch Page

1st parse

Fetch Page

1st parse

Fetch Page

1st parse

Fetch Page

1st parse

Consumer

Message Queue



Message Queues – decoupling db writes on a webservice 



Coupled comments webservice 

Receive and  
write to db 



Message Queue – Comment producer 

Receive and  
write to queue, 

release connection 



Message Queue – Comment consumer 

Take from queue 
and write to db 



Cache  



No cache – code from http://github.com/gleicon/vuvuzelr 



Cache – code from http://github.com/gleicon/vuvuzelr 

Check if it’s on cache 
Return if it is 

Feed the cache and set expiration  



Redis 

  Key/Value store 

  Key is a string, Value can be string, hash, list, set, scored set 

  Atomic operations 

  Publish/Subscription channels 

  Set/Scored Sets operations (union, diff, intersection) 

  UUID Generator, Distributed Cache, Message Queue (RestMQ, Resque), Serialized object 
storage, throttle control and more at http://rediscookbook.org/ 



Q & A 



Thanks ! 


