
NoSQL @ Liferay
James Falkner
Community Manager
Liferay, Inc.

*statistics taken from SourceForge.net	

Liferay
  10 Years of open source
  Most popular and widely downloaded open source portal
  Over 4 Million downloads and 50,000

downloads per month
  46,053 registered users on liferay.org
  16,343 forum participants
  164,342 forum posts
  50+ Active contributors (excluding

employees)
  ~400k CE Deployments
  ~6M LOC
  LGPL
  http://github.com/liferay
  http://liferay.com/downloads

Community Contributions

3

Liferay.com Registrations	

Forum Participants	

•  Communities	

•  Virtual Hosts	

•  Page & Organizational Hierarchy	

•  EXT Plugins	

•  Translations	

•  Control Panel	

•  Improved SEO	

•  Flag As Inappropriate	

•  Wiki Advancements	

•  Netvibes, iGoogle Integration	

•  Reporting Portlet	

•  Read/Write Database Splitting	

•  Testing, Bug Reporting, Help Desk,

Bug Fixing, Documentation	

4

Li
fe

ra
y	

M
ar

ke
te

ct
ur

e	

It’s all about the DATA!

Data

 Comes in all shapes and sizes and we deal with it in
different ways based on its characteristics: size,
number, volatility, longevity, updateability, complexity,
relations, etc

 Data Store: “space” where data is “stored” for the
duration of its CRUD lifecycle

Pigeonholed Data

Filesystem
OR

RDBMS (SQL)

Other Common Data Stores
 In recent years, different types of data stores have become
more prolific

 Cache?
- If the rule of a data store is defined by CRUD lifecycle, the
yes, caches are data stores!
- Liferay: memcached, ehcache, request/session caching, or
Terracotta

- Is one of the most prominent concerns in scaling for
performance in web-based systems

 Most such applications today (including Liferay) many types of data
stores involved in any single user operation:
- hardware (cpu/gpu, memory, hard drives, etc)
-  file system (static resources)
-  relational database
- cache engines (session, persistence, cluster)
-  indexing engine
- directory server
 Know your data before you choose your implementation

Still More Data Stores

Why so Many?
 Each type of store specializes in handling particular types of
data in specific ways

 Takes advantage of the characteristics of data to fulfill
underlying requirements
- Many Directory Servers: Berkeley DB (non-relational)
- Liferay: memcached (non-relational), Entity storage
(relational)

- Linux: vfs Page Cache (non-relational)
- Facebook, etc

Still More Data Stores
 Even more recent history has shown that there are even
more scenarios where traditional "data stores" simply don't
live up to the demands of modern applications

Characteristics of Data “Handling” Systems
 ACID (Atomicity, Consistency, Isolation, Durability)
 Expressiveness of language
 Flexibility of schema
 Performance
 Scalability
 Availability
 Fault Tolerance
 Agility (ease of development)
 Cost

Liferay Data
 Liferay built on top of RDBMS
- Main reason: it was an easy choice in 2001
- Liferay is JavaEE-based
- Well known standard (SQL)
- Many language bindings
- Many vendors
- Cheap

- Lots of potential customers already invested in RDBMS
(Oracle, DB2, SQL Server)

An Example
 Expando
- Name comes from JavaScript expando properties
- Homomorphic data pattern (schema is data)
- Large scales may introduce performance issues due to

impedance mismatch
- How to provide for greater scalability?

- Use a storage engine suited to its characteristics
- Scales well
- Flexibile Schema
- High Performance

An Example
ExpandoTable	

 (e.g. User#CUSTOM_ATTRIBUTES)	

ExpandoColumn
(e.g. Favorite

Color)	

ExpandoRow	

ExpandoValue
(User1:blue)	

ExpandoValue
(User1:apple)	

ExpandoColumn
(e.g. Favorite

Food)	

ExpandoRow	

ExpandoValue
(User6:green)	

ExpandoValue
(User6::pear)	

User 1	

Name	

Email	

Screen Name	

User 6	

Name	

Email	

Screen Name	

Expando and SQL
 Expando
- Non-relational, dynamic schema
- But defined as a relational model
using RDBMS

- Dynamic Queries not supported
- Finding expando involves a JOIN
across 4 or more tables

- Contention at high query/update
rates

select!
!BlogsEntry.entryId,!
!BlogsEntry.title,!
!ExpandoValue.data_!

from!
!BlogsEntry!

INNER JOIN!
!ExpandoTable!

ON (!
!ExpandoTable.companyId = BlogsEntry.companyId AND!
!ExpandoTable.classNameId = (select classNameId

from ClassName_ where value =
'com.liferay.portlet.blogs.model.BlogsEntry') AND!

!ExpandoTable.name = 'CUSTOM_FIELDS'!
)!
INNER JOIN!

!ExpandoColumn!
ON (!

!ExpandoColumn.tableId = ExpandoTable.tableId AND!
!ExpandoColumn.name like 'ListPriceAmount'!

)!
INNER JOIN!

!ExpandoValue!
ON (!

!ExpandoValue.columnId = ExpandoColumn.columnId AND!
!ExpandoValue.classPK = BlogsEntry.entryId!

)!

Model

Entity (e.g.
User)	

Name	

Email	

Screen Name	

	

ExpandoTable	

Entity	

Name	

ExpandoColumn	

Table	

Type	

	

	

ExpandoRow	

Table	

Entity	

	

	

ExpandoValue	

Entity	

Table	

Column	

Row	

Value	

One	

Many	

Expando using mongoDB
 Schemaless nature of Expando
 Less contention
- High write load
- Auto sharding
- Collection-level locking (when

available)
- Language drivers available,

tooling simple, query expressions
simple

- Further refinements possible

ExpandoTable (Collection)	

ExpandoRow (Document)	

{C0, V0}, {C1, V1} … ,{Cn, Vn} 	

{C0, V0}, {C1, V1} … ,{Cn, Vn} 	

User1 (Document)	

{FavoriteColor, “blue”} , {FavoriteFood, “pear”}	

…	

ExpandoRow (Document)	

https://github.com/liferay/liferay-plugins/tree/master/hooks/mongodb-hook	

	

Comparison: MySQL vs mongoDB (as applied to Expando)
 Insert Performance
- 100 to 10M Expando values, varying complexity
 Query Performance
- 100k random queries using various data set complexity
 Query+Update Performance
- 100k random queries or updates using various data set
complexity

-  MySQL: “Large” profile, no replication or partitioning, optimized InnoDB settings, stored procedures
-  mongoDB: No sharding, no replication sets
-  20 threads per test
-  Hardware: MBP dual-core Intel Core i7, 8GB

Comparison: MySQL vs MongoDB (as applied to Expando)
  At high complexity,

successive inserts, updates,
deletes require many table
queries and updates for
MySQL

 MongoDB Document-
oriented structures can be
written quickly as individual
documents for entire rows,
within a separate collection
for each Entity-Table

 Optimizations can help
(partitioning/sharding,
memory tables, etc)

Comparison: MySQL vs mongoDB (as applied to Expando)
  Reasonable at lower

complexity
  1M entries = 100 tables x 100

attributes x 100 users – not
that many

 Optimizations can help (e.g.
partitioning and
reorganization of tables)

Comparison: MySQL vs mongoDB (as applied to Expando)
  High contention for both
  In-place writing of mongoDB

performed well, when #
writers ~ # readers (think
Facebook, Twitter)

 Optimizations can help
(partitioning, memory tables,
etc)

Another Example
 Dynamic Data Lists
- End Users define custom
entities to store into database,
forms for capture and display
- Project Status
- Surveys/Polls
- Arbitrary, exensible, typed
data entry

 CMS, Document Library

More Examples
 mongoj – Java persistence
service generator and
ORM for mongoDB
- Generates mongoDB
mapping for entity
definitions in xml
- Indexing, Spring Config
- http://github.com/pdd/
mongoj

user = {
 "firstName" : "Joe",
 "lastName" : "Black",
 "image" : <binary image data>,
 "info" : {
 "dob" : <date object>,
 "address" : {
 "street" : "10 main street",
 "zip" : 12345
 },
 "phone" : "102345679",
 "reminders" : [
 <date1>, <date2>,...
]
 },
 "active" : true
}

Choose Wisely
 The nature of data is constantly changing
- Dynamic content demands dynamic data

storage techniques
- Massive scaling
 Know your data before you choose your

implementation
- SQL/RDBMS is a better choice in many

situations
 Consider implementation characteristics

