
Drizzle Replication
Roadmap

David Shrewsbury
shrewsbury.dave@gmail.com

http://dshrewsbury.blogspot.com
IRC: Shrews

Saturday, April 16, 2011

mailto:shrewsbury.dave@gmail.com
mailto:shrewsbury.dave@gmail.com
http://dshrewsbury.blogspot.com
http://dshrewsbury.blogspot.com

Today’s Topics

• Drizzle Replication Architecture

• Current Replication Features

• Future Replication Features

• Replication Demo

Saturday, April 16, 2011

Drizzle Replication
Architecture

• Nothing like MySQL

• Row-based changes, not statement based

• Google Protobuffers to represent changes in db

• File based or InnoDB based transaction logs

• Replication solutions implemented as plugins

Saturday, April 16, 2011

Drizzle Kernel

Parser

Optimizer

Executor

Plugin
Services

Replication
Services

Transaction
Services

Replication
Plugins

Logging
Plugins

Auth
Plugins

Scheduler
Plugins

UDF
Plugins

Storage
Engine
Plugins

Dictionary
Plugins

Kernel and Plugins

Saturday, April 16, 2011

Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins

Saturday, April 16, 2011

Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins

Saturday, April 16, 2011

What are Protobuf Messages?

• Open source library from Google
(http://code.google.com/p/protobuf/)

• Flexible and efficient mechanism for serializing
structured data

message Person
{
 required int32 id = 1;
 required string name = 2;
 optional string email = 3;
}

Saturday, April 16, 2011

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/

Message Definition

• Each message contains field names and types.

• Types can be numerical, boolean, string, or raw
data, or another message (sub-message).

• Fields can be optional, required, or repeated.

message Person
{
 required int32 id = 1;
 required string name = 2;
 optional string email = 3;
}

Saturday, April 16, 2011

How Are They Used?

• Drizzle’s basic unit of work representing server
changes

• Messages for transactions, DDL, server events

• Also used to represent various internal objects
and metadata: tables, schemas, etc.

Saturday, April 16, 2011

Drizzle Message Example
message Transaction
{
 required TransactionContext transaction_context = 1;
 repeated Statement statement = 2;
 optional Event event = 3;
 optional uint32 segment_id = 4;
 optional bool end_segment = 5;
}

message Statement
{
 enum Type { ROLLBACK=0; INSERT=1; DELETE=2; ... }
 required Type type = 1;
 required uint64 start_timestamp = 2;
 required uint64 end_timestamp = 3;
 option string sql = 4; /* May contain the original SQL */

}

Saturday, April 16, 2011

Generating Target Source

• Drizzle messages defined in .proto files, then
generate source code to manipulate messages

• GPB compiler takes .proto file as input and
produces source code for the target language.

• Support for C++, Java, Python, Perl, Ruby, etc.

protoc -cpp_out=$PWD transaction.proto

Saturday, April 16, 2011

Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins

Saturday, April 16, 2011

Replication Plugin Types

• replicator - Plugin that receives all replication
messages from the kernel and transforms them in
some useful way.

• applier - Plugin that receives messages from a
replicator plugin and does some kind of work (log/
analyze/transmit) with them.

Saturday, April 16, 2011

Replication Streams

• ReplicationServices kernel module maintains a list
of replication streams.

• A stream is a replicator and applier pair

• Kernel replicators appliers

Saturday, April 16, 2011

ReplicationServices

Replicator-A Applier-A

Applier-B Replicator-A

Streams

Plugin
Replicator-A

Plugin
Applier-A

Plugin
Applier-B

message::Transaction

message::Transaction

Saturday, April 16, 2011

Example Replicator

• filtered_replicator plugin

• Filters replication protobuf messages by schema or
table name

• To enable the plugin and filter out changes for the
foo schema:

drizzled --plugin-add=filtered_replicator
 --filtered-replicator.filteredschemas=foo

Saturday, April 16, 2011

Example Appliers

• InnoDB and file-based transaction logs

• By default, each pairs with the default_replicator
to receive ALL protobuf messages

• Each applies the messages differently, but never
modifies the message.

Saturday, April 16, 2011

Viewing Replication Streams

• Active replication streams are stored in a
DATA_DICTIONARY table

drizzle> SELECT * FROM data_dictionary.replication_streams;
+---------------------+-------------------------+
| REPLICATOR! | APPLIER! |
+---------------------+-------------------------+
| filtered_replicator | transaction_log_applier |
+---------------------+-------------------------+
1 row in set (0.000452 sec)

Saturday, April 16, 2011

Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins

Saturday, April 16, 2011

replicator API

• Implement plugin::TransactionReplicator interface

• Protobuffer message can be modified before
passing it along to the applier.

• Only a single method needs to be implemented:

/* replicate() should call in_applier->apply() */
virtual ReplicationReturnCode replicate(TransactionApplier *in_applier,
 Session &session,
 message::Transaction &to_replicate)= 0;

Saturday, April 16, 2011

applier API

• Implement plugin::TransactionApplier interface

• Transaction message cannot be modified.

• Only a single method needs to be implemented:

virtual ReplicationReturnCode apply(Session &in_session,
 const message::Transaction &to_apply)= 0;

Saturday, April 16, 2011

Putting it all together

Client

TransactionServices
commitTransaction()

TransactionServices
Create GPB message

ReplicationServices
Push to streams

Drizzle Kernel

StorageEngine Transaction
Replicator

Transaction
Applier

Saturday, April 16, 2011

Available
Replication Plugins

• Custom replicators (e.g. filtered_replicator)

• Transaction logs

• Replication to other systems

Saturday, April 16, 2011

File Based Transaction Log

• Author: Jay Pipes

• Provides a file-based log of compressed, serialized
Transaction messages

• Supports checksumming of individual messages

• Flexible file sync behavior

• Can use any available replicator plugin

• Very well tested for correctness

Saturday, April 16, 2011

$./sbin/drizzle --transaction-log.enable &

drizzle> show tables from data_dictionary like 'trans%';
+------------------------------------+
| Tables_in_data_dictionary (trans%) |
+------------------------------------+
| TRANSACTION_LOG |
| TRANSACTION_LOG_ENTRIES |
| TRANSACTION_LOG_TRANSACTIONS |
+------------------------------------+

Log Metadata

Saturday, April 16, 2011

InnoDB Based Transaction Log

• Authors: Brian Aker, Joe Daly, Stewart Smith,
Andrew Hutchings

• Internal InnoDB table is the transaction log

• Exposed in DATA_DICTIONARY

• Transaction recorded in log table within the same
transaction it is recording (always in sync)

• Avoids extra fsync’s of the file-based log; no group
commit required.

• Very well tested for correctness

Saturday, April 16, 2011

$./sbin/drizzle --innodb.replication-log &

drizzle> show create table data_dictionary.innodb_replication_log\G
*************************** 1. row ***************************
 Table: INNODB_REPLICATION_LOG
Create Table: CREATE TABLE `INNODB_REPLICATION_LOG` (
 `TRANSACTION_ID` BIGINT NOT NULL,
 `TRANSACTION_SEGMENT_ID` BIGINT NOT NULL,
 `COMMIT_ID` BIGINT NOT NULL,
 `END_TIMESTAMP` BIGINT NOT NULL,
 `TRANSACTION_MESSAGE_STRING` TEXT COLLATE utf8_general_ci NOT NULL,
 `TRANSACTION_LENGTH` BIGINT NOT NULL
) ENGINE=FunctionEngine COLLATE = utf8_general_ci REPLICATE = FALSE

drizzle> show create table data_dictionary.sys_replication_log\G
*************************** 1. row ***************************
 Table: SYS_REPLICATION_LOG
Create Table: CREATE TABLE `SYS_REPLICATION_LOG` (
 `ID` BIGINT,
 `SEGID` INT,
 `COMMIT_ID` BIGINT,
 `END_TIMESTAMP` BIGINT,
 `MESSAGE_LEN` INT,
 `MESSAGE` BLOB,
 PRIMARY KEY (`ID`,`SEGID`) USING BTREE,
 KEY `COMMIT_IDX` (`COMMIT_ID`,`ID`) USING BTREE
) ENGINE=InnoDB COLLATE = binary REPLICATE = FALSE

Saturday, April 16, 2011

RabbitMQ Replication

• Author: Marcus Eriksson
(http://developian.blogspot.com)

• Sends replication messages to an external
RabbitMQ message server

• Available as Drizzle plugin, or...

• External Java app that uses the transaction log
(http://www.rabbitreplication.org/)

Saturday, April 16, 2011

http://developian.com
http://developian.com
http://www.rabbitreplication.org
http://www.rabbitreplication.org

Native Replication

• Direct replication between Drizzle servers

• Uses master’s InnoDB transaction log

• Similar in design to MySQL replication
(I/O thread and applier thread)

• No relay log files; InnoDB table used for queue

• Status information stored in tables

• Initial implementation: ~2000 LOC

Saturday, April 16, 2011

Master

InnoDB
Transaction

Log

Slave

I/O
Thread

Applier
Thread

queue

Saturday, April 16, 2011

Using the Slave Plugin

drizzled --plugin-add=slave \
 --slave.config-file=/path/to/slave.cfg

Slave

drizzled --innodb.replication-log

Master

Saturday, April 16, 2011

Example Elliott slave.cfg

master-host = hostA
master-port = 3306
master-user = slave_user
master-pass = secret

try reconnecting 10 times before giving up
max-reconnects = 10
seconds-between-reconnects = 30

sleep interval before looking for more master data
io-thread-sleep = 5

sleep interval between local queue checks
applier-thread-sleep = 5

Saturday, April 16, 2011

Replication Tools

• drizzledump - backup program; outputs current
InnoDB transaction log position

• drizzletrx - dump transaction log as SQL or Google
Protobuf messages (file-based or InnoDB)

Saturday, April 16, 2011

drizzledump

$ drizzledump --single-transaction junk

-- drizzledump 2011.03.13.2241 libdrizzle 7, for unknown-linux-gnu (x86_64)
--
-- Host: localhost Database: junk
-- --
-- Server version!2011.03.13.2241 (Drizzle server)

-- SYS_REPLICATION_LOG: COMMIT_ID = 123, ID = 5000

<snip>

-- Dump completed on 2011-Mar-31 12:00:21

Saturday, April 16, 2011

drizzletrx
$ drizzletrx --use-innodb-replication-log -u root -p 3306

-- EVENT: Server startup
SET AUTOCOMMIT=0;
CREATE SCHEMA `junk` COLLATE utf8_general_ci;
COMMIT;

$ drizzletrx --use-innodb-replication-log -u root -p 3306 --raw

transaction_context {
 server_id: 1
 transaction_id: 772
 start_timestamp: 1301586845363917
 end_timestamp: 1301586845363920
}
event {
 type: STARTUP
}
segment_id: 1
end_segment: true

Saturday, April 16, 2011

Future and Potential
Replication Features

• Chained replication support

• Per-catalog replication

• End-to-end Checksumming

• Replicate from MySQL to Drizzle

• Multiple masters for single slave

Saturday, April 16, 2011

Master

InnoDB
Transaction

Log

Slave

I/O
ThreadI/O

Thread
Applier
Thread

queue

Master

InnoDB
Transaction

Log

Multi-master support
in Fremont release

Saturday, April 16, 2011

Getting More Info

• FreeNode IRC channel: #drizzle

• drizzle-discuss@lists.launchpad.net

• http://docs.drizzle.org

Saturday, April 16, 2011

mailto:drizzle-discuss@lists.launchpad.net
mailto:drizzle-discuss@lists.launchpad.net
mailto:drizzle-discuss@lists.launchpad.net
mailto:drizzle-discuss@lists.launchpad.net

Drizzle Developer Day

• Santa Clara Hilton Hotel - Coastal Ballroom

• Friday, April 15th - 9:30am to 4pm

• Learn how to use Drizzle, contribute code,
replication, catalogs, storage engines, testing and
benchmarking

Saturday, April 16, 2011

Replication Demo

Saturday, April 16, 2011

