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Today’s Topics

• Drizzle Replication Architecture

• Current Replication Features

• Future Replication Features

• Replication Demo
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Drizzle Replication 
Architecture

• Nothing like MySQL

• Row-based changes, not statement based

• Google Protobuffers to represent changes in db

• File based or InnoDB based transaction logs

• Replication solutions implemented as plugins
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Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins
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What are Protobuf Messages?

• Open source library from Google
(http://code.google.com/p/protobuf/)

• Flexible and efficient mechanism for serializing 
structured data

message Person
{
    required int32 id = 1;
    required string name = 2;
    optional string email = 3;
}
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Message Definition

• Each message contains field names and types.

• Types can be numerical, boolean, string, or raw 
data, or another message (sub-message).

• Fields can be optional, required, or repeated.

message Person
{
    required int32 id = 1;
    required string name = 2;
    optional string email = 3;
}
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How Are They Used?

• Drizzle’s basic unit of work representing server 
changes

• Messages for transactions, DDL, server events

• Also used to represent various internal objects 
and metadata: tables, schemas, etc.
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Drizzle Message Example
message Transaction
{
    required TransactionContext transaction_context = 1;
    repeated Statement statement = 2;
    optional Event event = 3;
    optional uint32 segment_id = 4;
    optional bool end_segment = 5;
}

message Statement
{
    enum Type { ROLLBACK=0; INSERT=1; DELETE=2; ... }
    required Type type = 1;
    required uint64 start_timestamp = 2;
    required uint64 end_timestamp = 3;
    option string sql = 4;   /* May contain the original SQL */
    ....
}
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Generating Target Source

• Drizzle messages defined in .proto files, then 
generate source code to manipulate messages

• GPB compiler takes .proto file as input and 
produces source code for the target language.

• Support for C++, Java, Python, Perl, Ruby, etc. 

protoc -cpp_out=$PWD transaction.proto
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Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins
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Replication Plugin Types

• replicator - Plugin that receives all replication 
messages from the kernel and transforms them in 
some useful way.

• applier - Plugin that receives messages from a 
replicator plugin and does some kind of work (log/
analyze/transmit) with them.
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Replication Streams

• ReplicationServices kernel module maintains a list 
of replication streams.

• A stream is a replicator and applier pair

• Kernel        replicators       appliers
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ReplicationServices
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Example Replicator

• filtered_replicator plugin

• Filters replication protobuf messages by schema or 
table name

• To enable the plugin and filter out changes for the 
foo schema:

drizzled --plugin-add=filtered_replicator
         --filtered-replicator.filteredschemas=foo
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Example Appliers

• InnoDB and file-based transaction logs

• By default, each pairs with the default_replicator 
to receive ALL protobuf messages

• Each applies the messages differently, but never 
modifies the message.
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Viewing Replication Streams

• Active replication streams are stored in a 
DATA_DICTIONARY table

drizzle> SELECT * FROM data_dictionary.replication_streams;
+---------------------+-------------------------+
| REPLICATOR!         | APPLIER!                |
+---------------------+-------------------------+
| filtered_replicator | transaction_log_applier |
+---------------------+-------------------------+
1 row in set (0.000452 sec)
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Kernel Role in Replication

• Creates replication (protobuffer) messages

• Distributes replication messages when complete

• APIs for registered replication plugins
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replicator API

• Implement plugin::TransactionReplicator interface

• Protobuffer message can be modified before 
passing it along to the applier.

• Only a single method needs to be implemented:

/* replicate() should call in_applier->apply() */
virtual ReplicationReturnCode replicate(TransactionApplier *in_applier,
                                        Session &session,
                                        message::Transaction &to_replicate)= 0;
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applier API

• Implement plugin::TransactionApplier interface

• Transaction message cannot be modified.

• Only a single method needs to be implemented:

virtual ReplicationReturnCode apply(Session &in_session,
                                    const message::Transaction &to_apply)= 0;
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Putting it all together

Client

TransactionServices
commitTransaction()

TransactionServices
Create GPB message

ReplicationServices
Push to streams

Drizzle Kernel

StorageEngine Transaction
Replicator

Transaction
Applier
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Available
Replication Plugins

• Custom replicators (e.g. filtered_replicator)

• Transaction logs

• Replication to other systems
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File Based Transaction Log

• Author: Jay Pipes

• Provides a file-based log of compressed, serialized 
Transaction messages

• Supports checksumming of individual messages

• Flexible file sync behavior

• Can use any available replicator plugin

• Very well tested for correctness
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$ ./sbin/drizzle --transaction-log.enable &

drizzle> show tables from data_dictionary like 'trans%';
+------------------------------------+
| Tables_in_data_dictionary (trans%) |
+------------------------------------+
| TRANSACTION_LOG                    | 
| TRANSACTION_LOG_ENTRIES            | 
| TRANSACTION_LOG_TRANSACTIONS       | 
+------------------------------------+

Log Metadata
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InnoDB Based Transaction Log

• Authors: Brian Aker, Joe Daly, Stewart Smith, 
Andrew Hutchings

• Internal InnoDB table is the transaction log

• Exposed in DATA_DICTIONARY

• Transaction recorded in log table within the same 
transaction it is recording (always in sync)

• Avoids extra fsync’s of the file-based log; no group 
commit required.

• Very well tested for correctness
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$ ./sbin/drizzle --innodb.replication-log &

drizzle> show create table data_dictionary.innodb_replication_log\G
*************************** 1. row ***************************
       Table: INNODB_REPLICATION_LOG
Create Table: CREATE TABLE `INNODB_REPLICATION_LOG` (
  `TRANSACTION_ID` BIGINT NOT NULL,
  `TRANSACTION_SEGMENT_ID` BIGINT NOT NULL,
  `COMMIT_ID` BIGINT NOT NULL,
  `END_TIMESTAMP` BIGINT NOT NULL,
  `TRANSACTION_MESSAGE_STRING` TEXT COLLATE utf8_general_ci NOT NULL,
  `TRANSACTION_LENGTH` BIGINT NOT NULL
) ENGINE=FunctionEngine COLLATE = utf8_general_ci REPLICATE = FALSE

drizzle> show create table data_dictionary.sys_replication_log\G
*************************** 1. row ***************************
       Table: SYS_REPLICATION_LOG
Create Table: CREATE TABLE `SYS_REPLICATION_LOG` (
  `ID` BIGINT,
  `SEGID` INT,
  `COMMIT_ID` BIGINT,
  `END_TIMESTAMP` BIGINT,
  `MESSAGE_LEN` INT,
  `MESSAGE` BLOB,
  PRIMARY KEY (`ID`,`SEGID`) USING BTREE,
  KEY `COMMIT_IDX` (`COMMIT_ID`,`ID`) USING BTREE
) ENGINE=InnoDB COLLATE = binary REPLICATE = FALSE
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RabbitMQ Replication

• Author: Marcus Eriksson
(http://developian.blogspot.com)

• Sends replication messages to an external 
RabbitMQ message server

• Available as Drizzle plugin, or...

• External Java app that uses the transaction log
(http://www.rabbitreplication.org/)
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Native Replication

• Direct replication between Drizzle servers

• Uses master’s InnoDB transaction log

• Similar in design to MySQL replication
(I/O thread and applier thread)

• No relay log files; InnoDB table used for queue

• Status information stored in tables

• Initial implementation: ~2000 LOC
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Using the Slave Plugin

drizzled --plugin-add=slave \
         --slave.config-file=/path/to/slave.cfg

Slave

drizzled --innodb.replication-log

Master
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Example Elliott slave.cfg

master-host = hostA
master-port = 3306
master-user = slave_user
master-pass = secret

# try reconnecting 10 times before giving up
max-reconnects = 10
seconds-between-reconnects = 30

# sleep interval before looking for more master data
io-thread-sleep = 5

# sleep interval between local queue checks
applier-thread-sleep = 5
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Replication Tools

• drizzledump - backup program; outputs current 
InnoDB transaction log position

• drizzletrx - dump transaction log as SQL or Google 
Protobuf messages (file-based or InnoDB)
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drizzledump

$ drizzledump --single-transaction junk

-- drizzledump 2011.03.13.2241 libdrizzle 7, for unknown-linux-gnu (x86_64)
--
-- Host: localhost    Database: junk
-- ------------------------------------------------------
-- Server version!2011.03.13.2241 (Drizzle server)

-- SYS_REPLICATION_LOG: COMMIT_ID = 123, ID = 5000

<snip>

-- Dump completed on 2011-Mar-31 12:00:21
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drizzletrx
$ drizzletrx --use-innodb-replication-log -u root -p 3306

-- EVENT: Server startup
SET AUTOCOMMIT=0;
CREATE SCHEMA `junk` COLLATE utf8_general_ci;
COMMIT;

$ drizzletrx --use-innodb-replication-log -u root -p 3306 --raw

transaction_context {
  server_id: 1
  transaction_id: 772
  start_timestamp: 1301586845363917
  end_timestamp: 1301586845363920
}
event {
  type: STARTUP
}
segment_id: 1
end_segment: true
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Future and Potential
Replication Features

• Chained replication support

• Per-catalog replication

• End-to-end Checksumming

• Replicate from MySQL to Drizzle

• Multiple masters for single slave
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Getting More Info

• FreeNode IRC channel: #drizzle

• drizzle-discuss@lists.launchpad.net

• http://docs.drizzle.org
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Drizzle Developer Day

• Santa Clara Hilton Hotel - Coastal Ballroom

• Friday, April 15th - 9:30am to 4pm

• Learn how to use Drizzle, contribute code, 
replication, catalogs, storage engines, testing and 
benchmarking
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Replication Demo
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