DNSSEC Exposed
Deploying DNSSEC in Real Life

Internet Systems Consortium
About the Presenter

• Alan Clegg

aclegg@isc.org

+1-919-355-8851

@Knobee
About ISC

- Internet Systems Consortium, Inc.
 - Headquartered in Redwood City, CA
 - 501(c)(3) Nonprofit Corporation

- ISC is a public benefit corporation dedicated to supporting the infrastructure of the universal connected self-organizing Internet — and the autonomy of its participants — by developing and maintaining core production quality software, protocols, and operations.
is THE NEW "COBOL"

Deploy DNSSEC
now... or something
bad might happen...

Web based Company looking for
web development experience with

iPhone, An...
IS THE NEW "COBOL"

Define a security standard for DNS that can be deployed, and operators will.

Deploy DNSSEC now... or something bad might happen...
Understanding DNSSEC
Introduction

• Contemplate for a moment the amount of trust that we put into the DNS infrastructure

• If DNS were to suddenly become unreliable or untrustworthy, what would the result be?
Introduction

• With millions of recursive, caching servers on the Internet...

 – Each one needs to be able to look up data from millions of zones

 – There is no way to distribute secret keys

 • Existing technology (TSIG) did not scale well
Introduction

• Central concept:

DNS data is augmented by a signature

• Validating resolvers can use the signature to verify that the data is authentic
Introduction

• DNSSEC is based on public key (asymmetrical) cryptography
 – Private key is used to sign DNS data
 – Public key is published via DNS so that validators can retrieve it
 – The public key is then used to validate the signatures, and thereby, the DNS data
Introduction

• DNSSEC provides cryptographic proof that the data received in response to a query is un-modified

• It does not deal with validating dynamic updates, nor with master to slave data transfers
Introduction

- DNSSEC enabled authoritative servers provide digital signatures across RRsets in addition to "standard" DNS responses

- DNSSEC validating resolvers provide authenticated responses with proven integrity
Introduction

• Clients using validating resolvers get "guaranteed good" results

• Data that does not validate provides a "SERVFAIL" response from the upstream resolver
Trust Validation

- With this knowledge, we are able to prove that data hasn't changed between the authoritative server and the validator, but how do we know we can trust it?

- Now that the root (".") is signed, that's easy, right?
Trust Validation

• DNSSEC is based on chains of trust

• At the top of chains are "trust-anchors"
 – One (signed) root, one trust-anchor
 – Until all TLDs are signed, it's not so easy
 – Trust anchors must be gathered and added to DNS configuration through leaps of faith
Trust Validation

• In BIND, trust anchors are added in "trusted-keys" statements

trusted-keys {
 . 257 3 8 "AwEAA[..]ihz0=";
};

• This creates an anchor based at the DNS root from which a chain is created
Chain of Trust

• Once a "trust anchor" is inserted, how does it actually create trust that leads down the DNS tree?

• Trust anchors consist of bits capable of validating the key used to sign the key that signs data in a given zone.
Chain of Trust

• First, we must realize that there are TWO keys inserted into each zone

 – Zone Signing Key (ZSK)
 • Used to sign the resource records in the zone being secured
 – Key Signing Key (KSK)
 • Used to sign the Zone Signing Key
Chain of Trust

- Delegation of signed zones include a new Resource Record type

 - Delegation Signer – DS

 - Hash of the public portion of the child's Key Signing Key
Chain of Trust

• If the \(DS \) record in the parent is signed using the parent's zone signing key, we know that the \(DS \) record is valid.

• If the hash of the child's Key Signing Key record matches the \(DS \) record then we know that the Key Signing Key is valid.
Chain of Trust

• If the Key Signing Key is known to be valid, its signature of the Zone Signing Key proves that the Zone Signing Key is valid.

• If the Zone Signing Key is known to be valid, it can be used to validate other RRs in the zone.
Chain of Trust

• A living example:

www.isc.org

The following slides were created using Sandia National Laboratories "DNSViz"

http://dnsviz.net/
Tusting isc.org

• . (root)
 – KSK 19036
 – ZSK 41248
 • Signed w/19036
 – .org DS records
 • signed w/ 41248
Trusting isc.org

- .org

 - KSK 21366
 - ZSK 05919
 - Signed w/21366

- isc.org DS records
 - signed w/ 05919

(2010-05-28 06:47:13 UTC)
Tustering isc.org

- isc.org
 - KSK 12892
 - Hashed into DS
 - ZSK 18516
 - Signed w/ 12892
 - SOA, AAAA, A
 - Signed w/ 18516
• With a trust anchor for root we can trust anything below it that is signed

– And that has DS records in place
DNSSEC Deployment
DNSSEC Deployment

- Generate required keys
 - `dnssec-keygen`
- Insert them into the zone
 - manual (or dynamic)
- Sign zone data
 - `dnssec-signzone` (or dynamic)
- Perform scheduled zone maintenance
 - manual (or dynamic)
DNSSEC Deployment

- `dnssec-keygen`
 - Used to create the required keys

- Key Signing Key
- Zone Signing Key
DNSSEC Deployment

- `dnssec-keygen`

 - Defaults algorithm to `RSASHA1`

 - Provides defaults for key size if default algorithm is used:
 - KSK – 2048 bits
 - ZSK – 1024 bits
DNSSEC Deployment

- `dnssec-keygen <zonename>`
- `dnssec-keygen -f KSK <zonename>`

- Produces 2 files per key

 $K<\text{zonename}>+XXX+YYYY.key$

 $K<\text{zonename}>+XXX+YYYY.private$
DNSSEC Deployment

- `dnssec-keygen`

 - Once keys are created, include their public portions (`.key`) into the zone file using standard procedures

 - Keep the `.private` portions secure
DNSSEC Deployment

• `dnssec-signzone`

 - Signs the zone data

• Creates RRSIG resource records for each authoritative RRset in the zone
• Transforms zone into "machine generated" file with a `.signed` extension
DNSSEC Deployment

- `dnssec-signzone`

 - BIND 9.7 introduced a new feature..

 - Smart Signing
 - Looks in key repository (directory) for keys
 - Keys are included in zone automatically
 - If key files contain timing meta-data, that timing data is used
DNSSEC Deployment

- New dynamic zone configuration

- `update-policy local;`
 - Automatically creates "local-only" TSIG key

- Allows BIND to update without complex configuration
DNSSEC Deployment

- New zone options for dynamic zones
 - `auto-dnssec off;`
 - Default
 - `auto-dnssec allow;`
 - Enables auto-inclusion of keys from repository
 - Enables "`rndc sign`"
 - `auto-dnssec maintain;`
 - Update DNSSEC based on key meta-data
DNSSEC Deployment

- **nsupdate**
 - New option `-l` (ell)
 - Use the named created "local key"
 - Set the server address to localhost
DNSSEC Deployment

• **rndc**

 – New option `sign`

 • Takes a dynamic zone, searches for keys in the key repository and signs the zone as needed.
Making it work...

```plaintext
zone secure.udp53.org {
  type master;
  key-directory "keys";
  update-policy local;
  auto-dnssec maintain;
  file "dynamic/secure.zone";
};
```
Making it work...

dnssec-keygen -K /etc/namedb/keys \\
 secure.udp53.org

dnssec-keygen -f KSK -K /etc/namedb/keys \\
 secure.udp53.org

rndc sign secure.udp53.org

Zone is now signed and published

Zone will be automatically re-signed as needed
Making it work...

- Be aware that this automation does NOT deal with DS records in the parent or DLV records in a registry.
DNSSEC Deployment

• BIND 9.7.2 (currently beta-2)

new-zone-file option
• specifies the name of a file to which 'dynamically created' zones are added

rndc addzone / rndc delzone
• add and remove zones without manually editing named.conf
Questions?
Comments?
Ready to deploy?