Introduction to Using MySQL in Cloud Computing

Chuck Bell, Mats Kindahl, Lars Thalmann
About the Speakers

• Chuck Bell, PhD
 • Enterprise Backup and Replication
 • (recovering) Windows Developer
 • chuck.bell@oracle.com

• Mats Kindahl, PhD
 • Replication Expert and Lead Developer
 • mats.kindahl@sun.com

• Lars Thalmann, PhD
 • Development Manager, Replication and Backup
 • lars.thalmann@sun.com
Topics

• What is Cloud Computing?
• Vendors
• Amazon Web Services
 • Getting Started
 • Walk-through: Launching an Instance
• Economics
• Use Cases
• Benefits and Risks
• Using MySQL in the Cloud
• MySQL Cloud Computing Best Practices
What is Cloud Computing?

- Cloud Computing **is not:**
 - A new technology
 - One vendor's dream of conquest
 - Simply the internet
 - Simply virtualization
 - Rebadged bespoke environments
What is Cloud Computing?

• Cloud Computing is:
 • Grid computing + virtualization + API = new uses for old toys!
 • On-demand, self-service
 • Internet accessible
 • Resource pooling
 • On-demand resources (elasticity)
 • Measured services
 • Many things to many people (sadly)
What is Cloud Computing?

• Service Models
 • Infrastructure as a Service (IaaS)
 • Resources are provided as virtual instances of complete hardware or operating system platforms.
 • Platform as a Service (PaaS)
 • The vendor provides the hosting environment and programming tools to permit customers to build solutions for the specific environment.
 • Software as a Service (SaaS)
 • Software is provided as a resource in the form of applications that run on the provider's hardware.

• Deployment Models
 • Private
 • Community
 • Public
 • Hybrid
Vendors

• 3Tera (http://www.3tera.com/)
 • An IaaS provider specializing in rapid scale out capabilities.

• Akamai (http://www.akamai.com/)
 • An IaaS provider specializing in managing data on the web.

• Amazon (http://aws.amazon.com/)
 • A cloud computing vendor offering virtualized SaaS, PaaS, and IaaS solutions along with storage solutions.

• Enki Consulting (http://www.enkiconsulting.net/)
 • An IaaS provider specializing in virtual private data center solutions.

• IBM Blue Cloud (http://www.ibm.com/ibm/cloud/)
 • A cloud computing vendor offering virtualized SaaS, PaaS, and IaaS solutions.
Vendors

• Joyent (http://www.joyent.com/)
 • An IaaS provider specializing in the needs of large enterprises.

• Layered Technologies (http://www.layeredtech.com/)
 • A PaaS and IaaS provider.

• Rackspace (http://www.rackspace.com/)
 • A PaaS specializing in providing host services for web applications.

• Salesforce.com (http://www.salesforce.com/)
 • A SaaS vendor specializing in shared CRM solutions.

• Terremark (http://www.terremark.com/)
 • An IaaS provider.
Amazon Web Services

• Portfolio of Web Enabled Services
 • Computational (“cloud”)
 • Database support
 • e-Commerce tools
 • Messaging
 • Monitoring
 • Storage Solutions
 • …and much more!
Amazon Web Services

- Fee-based service but pay only for what you use
- No hardware maintenance required
- Many tools and resources to support developers

<table>
<thead>
<tr>
<th>Compute</th>
<th>Messaging</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Elastic Compute Cloud (EC2)</td>
<td>Amazon Simple Queue Service (SQS)</td>
<td>Amazon Simple Storage Service (S3)</td>
</tr>
<tr>
<td>Amazon Elastic MapReduce</td>
<td>Monitoring</td>
<td>Amazon Elastic Block Storage (EBS)</td>
</tr>
<tr>
<td>Auto Scaling</td>
<td>Amazon CloudWatch</td>
<td>AWS Import/Export</td>
</tr>
<tr>
<td>Content Delivery</td>
<td>Networking</td>
<td>Support</td>
</tr>
<tr>
<td>Amazon CloudFront</td>
<td>Amazon Virtual Private Cloud (VPC)</td>
<td>AWS Premium Support</td>
</tr>
<tr>
<td></td>
<td>Elastic Load Balancing</td>
<td>Web Traffic</td>
</tr>
<tr>
<td>Database</td>
<td>Payments & Billing</td>
<td>Alexa Web Information Service</td>
</tr>
<tr>
<td>Amazon SimpleDB</td>
<td>Amazon Flexible Payments Service (FPS)</td>
<td>Alexa Top Sites</td>
</tr>
<tr>
<td>Amazon Relational Database Service (RDS)</td>
<td>Amazon DevPay</td>
<td></td>
</tr>
<tr>
<td>E-Commerce</td>
<td></td>
<td>Workforce</td>
</tr>
<tr>
<td>Amazon Fulfillment Web Service (FWS)</td>
<td></td>
<td>Amazon Mechanical Turk</td>
</tr>
</tbody>
</table>

http://aws.amazon.com/products
Amazon Web Services (AWS): Getting Started

• Sign up for AWS
 • Easy process
 • Requires method of payment (it’s not ‘free’!)

• Get Your Credentials

• Read about Core Technologies
 • Amazon Elastic Compute Cloud (EC2)
 • Amazon Simple Storage Service (S3)
 • Amazon Elastic Block Storage (EBS)

• Read about Common Tools
 • Amazon Console
 • EC2 Command Line Tools
 • EC2 API Tools
 • Browser Plugins (ElasticFox)
AWS: Credentials

- Amazon Login and Password
 - AWS Console and all account actions
- Access KeyID and Secret Access Key
 - Query APIs, Elastic Fox, etc.
- SOAP and EC2 Command-line Tools
 - X.509 certificate
- Working with Instances
 - SSH key pair
- Other services may require special credentials
- To get these, go to the Account | Security Credentials site from the AWS Console:
 http://aws.amazon.com
Concepts

• Amazon Simple Storage Service (S3)
 • Bucket storage for images and data
 • Independent ‘internet’ storage

• Amazon Machine Image (AMI)
 • Binary file containing a server extract (OS, tools, etc)

• Instance
 • An AMI that has been loaded and is in an executable state
 • SSH key pair

• Amazon Elastic Block Store (EBS)
 • Block storage device for data
 • Used with instances
Amazon Cloud: Launching an Instance

1. User selects AMI to launch
2. EC2 loads AMI from S3
3. Instance is loaded and executed
4. User connects one or more EBS volumes
Amazon Console Walk-through
Example: Launch an Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Launch Instance

Note: Your instances will launch in the US East region.

Service Health

- Current Status: Amazon EC2 (US East - N.)
 - Service is operating normally

My Resources

- 0 Running Instances
- 0 Elastic IPs
- 0 EBS Volumes
- 0 EBS Snapshots
- 2 Key Pairs
- 3 Security Groups
- 0 Load Balancers

Related Links

- Documentation
- All EC2 Resources
- Forums
- Feedback
- Report an Issue

© 2008 - 2009, Amazon Web Services LLC or its affiliates. All right reserved.
AWS Console: Launch Instance

To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.

Launch Instance

Note: Your instances will launch in the [region].

Service Health

Current Status	Details
Amazon EC2 (region) | Service is operating normally

View complete service health details
AWS Console: Launch Instance

Request Instances Wizard

Choose an Amazon Machine Image (AMI) from one of the tabbed lists below by clicking its **Select** button.

Quick Start

Fedora

<table>
<thead>
<tr>
<th>AMI ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami-b232d0db</td>
<td>Minimal Fedora Core 8, 32-bit architecture, Apache 2.0, and Amazon EC2 AMI Tools.</td>
</tr>
<tr>
<td>ami-22b0534b</td>
<td>Ruby on Rails Web Starter (Fedora Core 8, 32-bit architecture, Ruby 1.8.6, Rails 2.2.2, RubyGems 1.3.1, Mongrel 1.1.5, and MySQL 5.0.45)</td>
</tr>
<tr>
<td>ami-2cb05345</td>
<td>LAMP Web Starter (Fedora Core 8, 32-bit architecture, PHP 5.2, Apache 2.2, and MySQL 5)</td>
</tr>
<tr>
<td>ami-84db39ed</td>
<td>Basic Fedora Core 8 (Minimal Fedora Core 8, 32-bit architecture, and Amazon EC2 AMI Tools.)</td>
</tr>
<tr>
<td>ami-86db39ef</td>
<td>Basic 64-bit Fedora Core 8 (Fedora Core 8, 64-bit architecture, and Amazon EC2 AMI tools.)</td>
</tr>
<tr>
<td>ami-69c32f00</td>
<td>Getting Started on Microsoft Windows Server 2008 (Microsoft Windows Server 2008 R1 SP2 Datacenter edition, 32-bit architecture, Microsoft SQLServer 2008 Express, Internet Information Services 7, ASP.NET 3.5)</td>
</tr>
</tbody>
</table>
AWS Console: Launch Instance

Request Instances Wizard

Provide the details for your instance(s). You may also decide whether you want to launch your instances as "on-demand" or "spot" instances.

- **Number of Instances:** 1
- **Availability Zone:** No Preference
- **Instance Type:** Small (m1.small, 1.7 GB)

Launch Instances
EC2 instances let you pay for compute capacity by the hour with no long-term commitments. This transforms what are commonly large fixed costs into much smaller variable costs.

Request Spot Instances
AWS Console: Launch Instance

Request Instances Wizard

- **Number of Instances:** 1
- **Availability Zone:** No Preference

Advanced Instance Options

Here you can choose a specific kernel or RAM disk to use with your instances. You can also choose to enable CloudWatch Monitoring or enter data that will be available from your instances once they launch.

- **Kernel ID:** Use Default
- **RAM Disk ID:** Use Default
- **Monitoring:** Enable CloudWatch Monitoring for this instance (additional charges will apply)
- **User Data:**

  ```
  base64 encoded
  ```
AWS Console: Launch Instance

Choose from your existing Key Pairs

Your existing Key Pairs*: orig

Create a new Key Pair

Proceed without a Key Pair
AWS Console: Launch Instance

Security groups determine whether a network port is open or blocked on your instances. You may use an existing security group, or we can help you create a new security group to allow access to your instances using the suggested ports below. Add additional ports now or update your security group anytime using the Security Groups page. All changes take effect immediately.

Choose one or more of your existing Security Groups

Create a new Security Group

1. Name your Security Group
 LAMP

2. Describe your Security Group
 Default for LAMP server

3. Define allowed Connections

<table>
<thead>
<tr>
<th>Application</th>
<th>Transport</th>
<th>Port</th>
<th>Source Network (IPv4 CIDR)</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH</td>
<td>tcp</td>
<td>22</td>
<td>All Internet</td>
<td>Remove</td>
</tr>
<tr>
<td>HTTP</td>
<td>tcp</td>
<td>80</td>
<td>All Internet</td>
<td>Remove</td>
</tr>
<tr>
<td>MySQL</td>
<td>tcp</td>
<td>3306</td>
<td>All Internet</td>
<td>Remove</td>
</tr>
</tbody>
</table>

- The security group 'default' is reserved

Continue
AWS Console: Launch Instance

Request Instances Wizard

Please review the information below, then click Launch.

AMI: Other Linux AMI ID ami-2cb05345 (i386)
Name: LAMP Web Starter
Description: Fedora Core 8, 32-bit architecture, PHP 5.2, Apache 2.2, and MySQL 5 Edit AMI

Number of Instances: 1
Availability Zone: No Preference
Monitoring: Disabled
Instance Type: Small (m1.small)
Instance Class: On Demand Edit Instance Details

Kernel ID: Use Default
Ramdisk ID: Use Default
User Data: Edit Advanced Details

Key Pair Name: orig Edit Key Pair

Security Group(s): LAMP Edit Firewall

< Back Launch
AWS Console: Launch Instance

EC2 Instance: i-3d5e9556

- **AMI ID:** ami-2cb05345
- **Security Groups:** LAMP
- **Status:** running
- **Reservation:** d-72c0891a
- **Platform:** -
- **Kernel ID:** aki-f5c1219c
- **AMI Launch Index:** 0
- **Root Device:** -
- **Block Devices:** N/A - Instance Store
- **Lifecycle:** normal
- **Public DNS:** ec2-184-73-10-112.compute-1.amazonaws.com
- **Private DNS:** ip-10-212-106-195.ec2.internal
- **Launch Time:** 2010-03-02 19:58 EST
- **Zone:** us-east-1a
- **Type:** m1.small
- **Owner:** 936657535344
- **Ramdisk ID:** ari-tbc121b2
- **Key Pair Name:** orig
- **Monitoring:** disabled
- **Elastic IP:** -
- **Root Device Type:** instance-store
AWS Console: Launch Instance

Connect Help - Secure Shell (SSH)

Instance: i-e7bb658c

To access your instance using any SSH client

1. Open the SSH client of your choice (e.g., PuTTY, terminal).
2. Locate your private key file, new_mac.pem
3. Use chmod to make sure your key file isn't publicly viewable, ssh won't work otherwise:
   ```
   chmod 400 new_mac.pem
   ```
4. Connect to your instance using instance's public DNS
   ```
   [ec2-184-73-64-130.compute-1.amazonaws.com].
   ```

Example
Enter the following command line:

```bash
ssh -i new_mac.pem root@ec2-184-73-64-130.compute
```
AWS Console: Create EBS Volume
AWS Console: Attach Volume

Attach Volume

Volume: vol-a7fe22ce in us-east-1a

Instances: i-8733eaec in us-east-1a

Device: /dev/sdf

Windows Devices: xvdf through xvdp
Linux Devices: /dev/sdf through /dev/sdp

[Attach button]
Command line Walk-through
Commonly Used Commands

- **ec2-add-key-pair**
 - Creates a new SSH key pair.

- **ec2-run-instances**
 - Launches EC2 instances. You must specify at least the name of the image and your key pair. You can launch multiple instances at the same time.

- **ec2-describe-images**
 - Lists available images. Output includes the image ID, the location of the image in S3, and whether the image is available for launching. There are a number of parameters you can use to limit the search.

- **ec2-stop-instances**
 - Stops or pauses instances. You can stop multiple instances at the same time.

- **ec2-start-instances**
 - Starts or resumes instances. You can start multiple instances at the same time.

- **ec2-terminate-instances**
 - Terminate instances. You can terminate multiple instances at the same time.
AWS: Command-line Access

• Search for images to launch

Chucks-MacBook-Pro:~ Chuck$ ec2-describe-images -o self -o amazon | grep mysql

IMAGE ami-22fba4b ec2-public-images/fedora-core4-apache-mysql-v1.07.manifest.xml amazon available public i386 machine instance-store
IMAGE ami-25b6534c ec2-public-images/fedora-core4-apache-mysql.manifest.xml amazon available public i386 machine instance-store
IMAGE ami-255fba4c ec2-public-images/fedora-core4-mysql-v1.07.manifest.xml amazon available public i386 machine instance-store
IMAGE ami-22b6534b ec2-public-images/fedora-core4-mysql.manifest.xml amazon available public i386 machine instance-store
AWS: Command-line Access

- Launch the instance

Chucks-MacBook-Pro:~ Chuck$ `ec2-run-instances ami-225fba4b -k new_mac`

RESERVATION r-2249194a 936657535344 default
INSTANCE i-75af711e ami-225fba4b pending new_mac m1.small
 2010-03-09T02:13:27+0000 us-east-1d monitoring-disabled instance-store

- View instance status

Chucks-MacBook-Pro:~ Chuck$ `ec2-describe-instances`

RESERVATION r-2249194a 936657535344 default
INSTANCE i-75af711e ami-225fba4b ec2-184-73-9-65.compute-1.amazonaws.com domU-12-31-39-02-EC-E7.compute-1.internal
 running new_mac 0 m1.small 2010-03-09T02:13:27+0000 us-east-1d
 monitoring-disabled 184.73.9.65 10.248.243.21
 instance-store
AWS: Command-line Access

• Authorize access

Chucks-MacBook-Pro:~ Chuck$ ec2-authorize default -p 22
GROUP default
PERMISSION default ALLOWS tcp 22 22 FROMCIDR 0.0.0.0/0

• Connect

Chucks-MacBook-Pro:~ Chuck$ ssh -i ./ec2_credentials/new_mac.pem
root@ec2-184-73-9-65.compute-1.amazonaws.com
__| __| _) Rev: 2
| (/
___|___|___|
Welcome to an EC2 Public Image
 :-)
Apache2+MySQL4
__ c __ /etc/ec2/release-notes.txt
[root@domU-12-31-39-02-EC-E7 ~]# exit
logout
Connection to ec2-184-73-9-65.compute-1.amazonaws.com closed.
AWS: Command-line Access

• Terminate the instance

Chucks-MacBook-Pro:~ Chuck$ `ec2-terminate-instances i-75af711e`
INSTANCEx i-75af711e running shutting-down

Chucks-MacBook-Pro:~ Chuck$ `ec2-describe-instances`
RESERVATIONr-2249194a 936657535344 default
INSTANCEx i-75af711e ami-225fba4b ec2-184-73-9-65.compute-1.amazonaws.com domU-12-31-39-02-EC-E7.compute-1.internal shuttind-down new_macm1.small 2010-03-09T02:13:27+0000
us-east-ld monitoring-disabled 184.73.9.65
10.248.243.21 instance-store

• Ensure it is terminated

Chucks-MacBook-Pro:~ Chuck$ `ec2-describe-instances`
RESERVATIONr-2249194a 936657535344 default
INSTANCEx i-75af711e ami-225fba4b terminated new_mac0 m1.small 2010-03-09T02:13:27+0000 us-east-1d
monitoring-disabled instance-store
Economics

- Initial cost of traditional hardware is very expensive.
- Long-term cost of highly active cloud can exceed the daily operating cost of traditional infrastructures.
- Typically, cloud computing is cheaper in the long run because:
 - You never, ever buy hardware.
 - You pay for what you need and nothing more.
- Depending on your usage, it is possible cloud computing may not be cost effective:
 - Training costs.
 - Retooling your application.
- The bottom line: Do you homework!
Use Cases

• Traditional web services
 • Content providers

• Shared services
 • One or more applications shared by multiple users/customers

• Scale out from enterprise
 • Expand traditional information technologies into the web
 • Amazon Virtual Private Cloud (VPC)

• Cloud bursting
 • Allow rapid expansion of an application to meet needs that may wax and wane over time

• Research and Development
 • Conduct experimentation without needing dedicated (and temporary) hardware resources
Benefits

• Reduced run time and response time
 • Use grid or scale out techniques to meet demands and improve throughput times

• Minimize infrastructure risk and eliminate maintenance
 • Hardware failure is no longer your responsibility
 • Do more with less staff and less hardware

• Lower cost of entry
 • Pay only for what you need

• Increased pace of development
 • Develop and deploy faster with less investment
Risks

• Potentially run-away costs
 • Heavy load and vast scale out will increase costs
 • Duplication of work will incur unnecessary costs

• Lack of features
 • Some vendors may not have the features you need making it difficult to continue to use their products.

• Security risks
 • Since you are sharing resources with others, you need to focus on security more than ever.

• Service failure
 • If the service you rely on fails, you’re toast
Using MySQL in the Cloud

• Where’s the magic?
 • Nothing special about MySQL in the cloud (in general)
 • Full features available
 • Same tools to manage and monitor

• So what is different?
 • Rapid deployment
 • Rapid scale out
Example: MySQL Replication and EC2

- Master is in the ‘cloud’, slave is local (real hardware)
- Process
 - Launch an instance of the LAMP Web Starter image
 - Connect to instance and configure it as a master
 - Start the MySQL server on the instance
 - Start a local MySQL server
 - Configure the local MySQL server to be a slave
 - Connect to the master in the cloud
- As you can see, no surprises here
Example: MySQL Replication and EC2

Chucks-MacBook-Pro:~ Chuck$ ssh -i ./keys/orig.pem root@ec2-184-73-10-112.compute-1.amazonaws.com

Welcome to an EC2 Public Image

Bien

|--[see /etc/ec2/release-notes]--
[root@ip-10-212-106-195 ~]# mysql -uroot
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.0.45 Source distribution
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>
mysql> SHOW MASTER STATUS;

+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
|------------------+----------+--------------+------------------|
| mysql-bin.000001 | 98 | | |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)
mysql>
mysql> GRANT REPLICATION SLAVE ON *.* TO 'rpl'@'%' IDENTIFIED BY 'rpl';
Example: MySQL Replication and EC2

mysql> CHANGE MASTER TO MASTER_HOST='ec2-184-73-10-112.compute-1.amazonaws.com',
 MASTER_USER='rpl', MASTER_PASSWORD='rpl', MASTER_PORT=3306, MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=98;
Query OK, 1 row affected (0.00 sec)
mysql> START SLAVE;
Query OK, 1 row affected (0.00 sec)
mysql> SHOW SLAVE STATUS \G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: ec2-204-236-207-171.compute-1.amazonaws.com
Master_User: rpl
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: mysql-bin.000001
Read_Master_Log_Pos: 325
Relay_Log_File: mysqld-relay-bin.000002
Relay_Log_Pos: 470
Relay_Master_Log_File: mysql-bin.000001
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
...
 Exec_Master_Log_Pos: 325
 Relay_Log_Space: 626
 Until_Condition: None
...
MySQL Cloud Computing Best Practices

• Run only one MySQL Server per EC2 instance
 • MySQL will run faster with dedicated computational units and memory resources.

• Leverage larger instance types for heavy usage
 • You should consider using larger instance types for high transactional or heavy read or write databases.

• Use additional EBS volumes for InnoDB tablespaces
 • Use multiple EBS volumes to separate your databases and use multiple InnoDB tablespaces (e.g., one per EBS volume) to get better I/O performance.

• Warm up data partitions
 • You can use the Linux dd command to write to the disk. While the penalty still occurs and cannot be avoided, at least the first write to your databases will not suffer the effects.
MySQL Cloud Computing Best Practices

• Be sure to configure MySQL properly
 • Simply running MySQL in EC2 isn't going to make it faster.

• Don't forget monitoring
 • You can and should monitor your MySQL servers running in the cloud.

• Use MySQL replication
 • MySQL replication is for scale out, load balancing, and high availability. The cloud makes these features easier to use.

• Use standard AMIs
 • Unless you have vast experience in running the host operating system in a virtual environment, the task of building custom AMIs can be time consuming and error prone. Whenever possible, use the existing Amazon AMIs or known stable community AMIs.
MySQL Cloud Computing Best Practices

• Mount partitions with noatime or nodiratime options
 • Mounting your partitions with either of these options should yield up to 10% better I/O performance.

• Use EBS with MySQL
 • EBS is a block store device with good performance and sustainability from instance failures, as well as elasticity.

• Perform snapshotting Using S3
 • Snapshots are an effective and efficient way to take a backup and provide a mechanism for rapid recovery in the event that data becomes corrupt.

• Use load balancing
 • You can use the Amazon Elastic Load Balancing resource or even run your own software load balancer such as HAProxy.
Where To Go From Here

The Amazon cloud products are very complex and can lead to a steep learning curve. Fortunately, a lot of resources are available on the AWS website. We list a few of the more commonly accessed and must-read links here.

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
Questions?

Coming soon:
June 2010

MySQL High Availability

Charles Bell, Mats Kindahl
& Lars Thalmann

Buy the book!
The presentation is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.