Achieving PCI Compliance with MySQL

Ryan Lowe & Fernando Ipar
2010 O’Reilly MySQL C&E
Agenda

• Overview of PCI
• Which requirements apply to us?
• Requirement-by-requirement discussion
• Questions
PCI DSS

- History
- Goals
- Common Myths
Merchant Responsibility

<table>
<thead>
<tr>
<th>Merchant Level</th>
<th>Definition</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6M+</td>
<td>Annual Audit Quarterly Network Scan **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1M-6M</td>
<td>Quarterly Network Scan ** V: Annual Self-Assessment *** M: Annual Audit (QSA)</td>
</tr>
<tr>
<td>3</td>
<td>20k-1M</td>
<td>Quarterly Network Scan ** Annual Self-Assessment ***</td>
</tr>
<tr>
<td>4</td>
<td><20k</td>
<td>Quarterly Network Scan ** Annual Self-Assessment *</td>
</tr>
</tbody>
</table>

* Recommended
** Qualified Independent Scan Vendor
*** Merchant
PCI DSS v1.2

- Build and Maintain a Secure Network
- Protect Cardholder Data
- Maintain a Vulnerability Management Program
- Implement Strong Access Control Measures
- Regularly Monitor and Test Networks
- Maintain an Information Security Policy
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY
- REQ 1 FIREWALL
- REQ 2 PASSWORD
- REQ 4 NETWORK ENCRYPTION
- REQ 8 SECURE SYSTEMS
- REQ 11 TESTING

DATA SECURITY
- REQ 2 PASSWORD
- REQ 3 CMQ PROTECTION
- REQ 5 ANTI-VIRUS
- REQ 7 ACCESS CONTROL
- REQ 8 IDENTITY
- REQ 11 TESTING

PHY
- REQ 9 PHYSICAL ACCESS CONTROL

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

REQ 10 LOG MANAGEMENT

NETWORK SECURITY

DATA SECURITY

PHY

PCI DSS v1.2
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY
- REQ 1 FIREWALL
- REQ 2 PASSWORD
- REQ 4 NETWORK ENCRYPTION
- REQ 8 SECURE SYSTEMS
- REQ 11 TESTING
- REQ 2 PASSWORD

DATA SECURITY
- REQ 8 CFG PROTECTION
- REQ 5 ANTI-VIRUS
- REQ 7 ACCESS CONTROL
- REQ 6 IDENTIFICATION
- REQ 10 TESTING

PHY
- REQ 9 PHYSICAL ACCESS CONTROL

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT

REQ 1, FIREWALL
REQ 2, PASSWORD
REQ 3A, NETWORK ENCRYPTION
REQ 8, SECURE SYSTEMS
REQ 11, TESTING
REQ 2, PASSWORD
REQ 9, UID PROTECTION
REQ 5, ANTI-MALWARE
REQ 7, ACCESS CONTROL
REQ 6, IDENTITY
REQ 11, TESTING
REQ 9, PHYSICAL ACCESS CONTROL
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 10 LOG MANAGEMENT

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

DEF QL PHYSICAL ACCESS CONTROL

DEF QL ENCRYPTION

DEF QL PROTECTION

DEF QL SYSTEMS TESTING

DEF QL PASSWORD

DEF QL ACCESS CONTROL

DEF QL IDENTITY

DEF QL TESTING

DEF QL PRE-INSTALL

DEF QL DESIGN

DEF QL SECURITY POLICY

DEF QL DATA SECURITY

DEF QL NETWORK SECURITY

DEF QL PHYSICAL SECURITY

DEF QL INFORMATION SECURITY POLICY
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT

REQ 1 FIREWALL
REQ 2 PASSWORD
REQ 4 NETWORK ENCRYPTION
REQ 5 SECURE SYSTEMS
REQ 11 TESTING
REQ 2 PASSWORD
REQ 3 CHG PROTECTION
REQ 5 ANTI-VIRUS
REQ 7 ACCESS CONTROL
REQ 8 IDENTITY
REQ 11 TESTING
REQ 9 PHYSICAL ACCESS CONTROL
REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

DATA SECURITY

PHY

REQ 10 LOG MANAGEMENT

REQ 1 FIREWALL
REQ 2 PASSWORD
REQ 4 NETWORK ENCRIPTION
REQ 6 SECURE SYSTEMS
REQ 11 TESTING
REQ 2 PASSWORD
REQ 8 CISF PROTECTION
REQ 5 ANTI-VIRUS
REQ 7 ACCESS CONTROL
REQ 8 IDENTIFICATION
REQ 11 TESTING
REQ 9 PHYSICAL ACCESS CONTROL
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY

- REQ 1: FIREWALL
- REQ 2: PASSWORD
- REQ 4: NETWORK ENCRYPTION
- REQ 8: SECURE SYSTEMS
- REQ 11: TESTING

DATA SECURITY

- REQ 2: PASSWORD
- REQ 3: CMD PROTECTION
- REQ 5: ANTI-VIRUS
- REQ 7: ACCESS CONTROL
- REQ 8: IDENTITY
- REQ 11: TESTING
- REQ 8: PHYSICAL ACCESS CONTROL

REQ 10 LOG MANAGEMENT
REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY
- REQ 1 FIREWALL
- REQ 2 PASSWORD
- REQ 3 NETWORK ENCRYPTION
- REQ 4 SECURE SYSTEMS
- REQ 11 TESTING

DATA SECURITY
- REQ 2 PASSWORD
- REQ 3 CMDB PROTECTION
- REQ 5 ANTI-VIRUS
- REQ 7 ACCESS CONTROL
- REQ 8 IDENTITY
- REQ 11 TESTING

PHY
- REQ 8 PHYSICAL ACCESS CONTROL

REQ 10 LOG MANAGEMENT
PCI DSS v1.2

REQ 12 MAINTAIN AN INFORMATION SECURITY POLICY

NETWORK SECURITY DATA SECURITY PHY

REQ 10 LOG MANAGEMENT

REQ 9 PHYSICAL ACCESS CONTROL
Requirement 2

Do not use vendor-supplied defaults for system passwords and other security parameters

“Malicious individuals (external and internal to a company) often use vendor default passwords and other vendor default settings to compromise systems. These passwords and settings are well known by hacker communities and are easily determined via public information.”
Requirement 2

```sql
mysql> SELECT user, host, password FROM mysql.user;
+-------+---------+---------+
| user  | host    | password |
|-------+---------+---------+
| root  | localhost |         |
| root  | testbox1 |         |
| root  | 127.0.0.1 |         |
|       | localhost |         |
|       | testbox1 |         |
+-------+---------+---------+
5 rows in set (0.28 sec)
```
Requirement 2

%> mysql_secure_installation

... Set root password? [Y/n] Y
... Remove anonymous users? [Y/n] Y
... Disallow root login remotely? [Y/n] Y
... Remove test database and access to it? [Y/n] Y
... Reload privilege tables now? [Y/n] Y
Requirement 2

```sql
mysql> SELECT user, host, password FROM mysql.user;
+------------+------------+-------------------------------------------+
|    user    |    host    | password                                  |
+------------+------------+-------------------------------------------+
|    root    | localhost  | *F169C0AFEEC30BFF924130B124E6AE3E875D5F60  |
+------------+------------+-------------------------------------------+
1 row in set (0.00 sec)

mysql> SHOW GLOBAL VARIABLES LIKE 'old_passwords';
+-------------+-------+
| Variable_name | Value |
+-------------+-------+
| old_passwords | OFF   |
+-------------+-------+
1 row in set (0.00 sec)
```
Password Hash is NOT Secure

%> strings user.MYD
localhost
root*F169C0AFEEC30BFF924130B124E6AE3E875D5F60
%>

• Permissions for datadir, tmpdir, etc
2.2.3 – Configure system security parameters to prevent misuse

- Be judicious with your GRANTs
- Disable local_infile
- Disable old_passwords
- Set read_only=ON
- Enable secure_auth
Requirement 3

Protect Stored Cardholder Data

“Protection methods such as encryption, truncation, masking, and hashing are critical components of cardholder data protection. If an intruder circumvents other network security controls and gains access to encrypted data, without the proper cryptographic keys, the data is unreadable and unusable to that person...”
Requirement 3 – Data

<table>
<thead>
<tr>
<th>Data Element</th>
<th>Storage Permitted</th>
<th>Protection Required</th>
<th>Req 3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Account Number</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cardholder Name</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Service Code</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Full Magnetic Stripe Data</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CAV2/CVC2/CVV2/CID</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PIN/PIN Block</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Requirement 3
MySQL Encryption Functions

<table>
<thead>
<tr>
<th>“ENCRYPT”</th>
<th>“DECRYPT”</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES_ENCRYPT()</td>
<td>AES_DECRYPT()</td>
</tr>
<tr>
<td>COMPRESS()</td>
<td>UNCOMPRESS()</td>
</tr>
<tr>
<td>ENCODE()</td>
<td>DECODE()</td>
</tr>
<tr>
<td>DES_ENCRYPT()</td>
<td>DES_DECRYPT()</td>
</tr>
</tbody>
</table>

One-Way Functions

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCRYPT()</td>
</tr>
<tr>
<td>MD5()</td>
</tr>
<tr>
<td>SHA() & SHA1()</td>
</tr>
<tr>
<td>OLD_PASSWORD()</td>
</tr>
<tr>
<td>PASSWORD()</td>
</tr>
</tbody>
</table>
Requirement 3 - Example

mysql> CREATE TABLE `cc_info` (
 -> `id` int unsigned NOT NULL auto_increment,
 -> `cc_num` varbinary(32) NOT NULL,
 -> `service_code` varbinary(32) NOT NULL,
 -> `name_on_card` varbinary(48) NOT NULL,
 -> PRIMARY KEY (`id`))
-> ENGINE=InnoDB;
Query OK, 0 rows affected (0.01 sec)

(16*(CEILING(string_length/16)+1))
mysql> INSERT INTO `cc_info`
-> (`cc_num`, `service_code`, `name_on_card`)
-> VALUES (
-> AES_ENCRYPT('1234123412341234','secret_key'),
-> AES_ENCRYPT('1234', 'secret_key'),
-> AES_ENCRYPT('John Doe', 'secret_key'));
Query OK, 1 row affected (0.35 sec)
mysql> SELECT id, cc_num, service_code, name_on_card
 -> FROM cc_info\G
*************** 1. row ***********************
 id: 1
 cc_num: ??
 ? q$?!~c?3Pg?"xu&3?:?,am?
 service_code: y.??A??
 ?? ?a??
 name_on_card: ?93s?!? X?8?|nZ
1 row in set (0.00 sec)
mysql> SELECT id,
 -> AES_DECRYPT(`cc_num`,'secret_key')
 -> AS `cc_num`,
 -> AES_DECRYPT(`service_code`, 'secret_key')
 -> AS `service_code`,
 -> AES_DECRYPT(`name_on_card`, 'secret_key')
 -> AS `name_on_card` -> FROM `cc_info`
G *************** 1. row

 id: 1
 cc_num: 1234123412341234
service_code: 1234
name_on_card: John Doe
1 row in set (0.00 sec)
Requirement 3 – The Binary Log

%> mysqlbinlog log-bin.000001
...
#100406 16:35:31 server id 1 end_log_pos 461 Query thread_id=1
 exec_time=0 error_code=0
use cc/*!*/;
SET TIMESTAMP=1270596931/*!*/;
INSERT INTO `cc_info` (`cc_num`, `service_code`, `name_on_card`)
 VALUES (AES_ENCRYPT('1234123412341234', 'secret_key'),
 AES_ENCRYPT('1234', 'secret_key'), AES_ENCRYPT('John Doe',
 'secret_key'))
at 461 #100406 16:35:31 server id 1 end_log_pos 488 Xid = 6
Requirement 3 – The Binary Log

```sql
>% mysqlbinlog -v log-bin.000001
...
BINLOG 'Msa7SxMBAAAANQAAAAN0DAAAAA8AAAAAAAAAAAAnjAAdjY19pbmZvAAQD/g8PBv4gIAAwAAAA=
Msa7SxcBAAAAAZQAAAEIIEAAQAA8AAAAAEEABP/wBAAAACCY3AusAHEkreUIIX5jyzNQZ90ieHUm
M8Y6BgfLGftjxB5Lo7nQeK6zQr+wQCVYabiELI5M3P+IYoAWOo4iHxuWhI='/*!*/;
### INSERT INTO cc.cc_info
### SET
### @1=1
### @2='??\x0b?\x00?q$??\x08!~c?3Pg"xu&3?:\x06\x07?,am?'
### @3='y.??A??\x0a??\x00?a??'
### @4='?93s?!?\x00X?8?|nZ\x12'
# at 1090 #100406 16:39:30 server id 1 end_log_pos 1117 Xid = 23 COMMIT/*!*/
```
Requirement 3 – Alternatives

• Full Disk Encryption
 – Logical access must be managed independently of native operating system access control mechanisms

• Encrypt in the Application Layer
 – Key Handling & Management Issues
Requirement 3 – Additional

• 3.1 – Keep cardholder data storage to a minimum. Develop a data retention and disposal policy. Limit storage amount and retention time to that which is required for business, legal, and/or regulatory purposes, as documented in the data retention policy.

• 3.2 – Do not store sensitive authentication data after authorization (even if encrypted).

• 3.3 – Mask PAN when displayed (the first six and last four digits are the maximum number of digits to be displayed).

Don’t Forget Your Backups
Requirement 4

Encrypt transmission of cardholder data across open, public networks

• The traffic between datacenters is encrypted at the network layer (secure VPN, for example)
• Applicable data is encrypted before being inserted into the database (encrypting in the application layer or using RBR).
• You use MySQL Replication over SSL
Requirement 6

Develop and maintain secure systems and applications

“...All critical systems must have the most recently released, appropriate software patches to protect against exploitation and compromise of cardholder data by malicious individuals and malicious software.”
Requirement 6 - Overview

- Validation of all input
- Validation of proper error handling
- Validation of secure cryptographic storage
- Validation of secure communications
- Separate development/test and production environments
- Separation of duties between development/test and production environments
- Production data (live PANs) are not used for testing or development
- Web Application Security (XSS, CSRF, etc)
- Formalizing the process for security updates
Requirement 6

• 6.2 - Establish a process to identify newly discovered security vulnerabilities
 – BugTraq
 – MySQL Announce List

• 6.4 – Follow change control procedures for all changes to system components
 – Documentation of impact
 – Management sign-off by appropriate parties
 – Testing of operational functionality
 – Back-out procedures
Requirement 7

Restrict access to cardholder data by business need to know

- VIEWs are your friend
- Follow Account Best Practices
 - Requirement 2
Requirement 7 – Resource Limits

- MAX_QUERIES_PER_HOUR
- MAX_UPDATES_PER_HOUR
- MAX_CONNECTIONS_PER_HOUR
- MAX_USER_CONNECTIONS
Requirement 8

Assign a unique ID to each person with computer access

• Assign all users a unique ID before allowing them to access system components or cardholder data

• Ensure proper user authentication and password management for non-consumer users and administrators on all system components
Requirement 10

Track and monitor all access to network resources and cardholder data

- Establish a process for linking all access to system components to each individual user
- Implement automated audit trails for all system components to reconstruct events
- Record audit trail entries for all system components
- Synchronize all critical system clocks and times
- Secure audit trails so they cannot be altered
- Review logs for all system components at least daily
- Retain audit trail history for at least one year, with a minimum of three months immediately available for analysis
Requirement 10 – SANS Top 5

1. Attempts to Gain Access through Existing Accounts
2. Failed File or Resource Access Attempts
3. Unauthorized Changes to Users, Groups and Services
4. Systems Most Vulnerable to Attack
5. Suspicious or Unauthorized Network Traffic Patterns
Requirement 11

Regularly test security systems and processes

“Vulnerabilities are being discovered continually by malicious individuals and researchers, and being introduced by new software. System components, processes, and custom software should be tested frequently to ensure security controls continue to reflect a changing environment.”
Requirement 12

Maintain a policy that addresses information security for employees and contractors

- 12.1 - Establish, publish, maintain, and disseminate a security policy
- 12.2 - Develop daily operational security procedures that are consistent with requirements in this specification
- 12.3 - Develop usage policies for critical employee-facing technologies to define proper use of these technologies for all employees and contractors
- 12.4 - Ensure that the security policy and procedures clearly define information security responsibilities for all employees and contractors
Requirement 12 – Continued

• 12.5 - Assign to an individual or team security management responsibilities
• 12.6 - Implement a formal security awareness program to make all employees aware of the importance of cardholder data security
• 12.7 - Screen potential employees prior to hire to minimize the risk of attacks from internal sources
• 12.8 - If cardholder data is shared with service providers, maintain and implement policies and procedures to manage service providers
• 12.9 - Implement an incident response plan. Be prepared to respond immediately to a system breach
Ten Common Myths of PCI DSS

1. One vendor and product will make us compliant
2. Outsourcing card processing makes us compliant
3. PCI compliance is an IT project
4. PCI will make us secure
5. PCI is unreasonable; it requires too much
6. PCI requires us to hire a QSA
7. We don’t take enough credit cards to be compliant
8. We completed an SAQ so we’re compliant
9. PCI makes us store cardholder data
10. PCI is too hard
Conclusions

Questions

Comments

War Stories