Feature Extraction

Tales from the missing manual
Who Am I?

Ted Dunning

Apache Board Member (but not for this talk)
Early Drill Contributor, mentor to many projects
tdunning@apache.org

CTO @ MapR, HPE (how I got to talk to these users)
tdunning@mapr.com

Enthused techie
ted.dunning@gmail.com
@ted_dunning
Summary (in advance)

Accumulate data exhaust if possible

Accumulate features from history

Convert continuous values into symbols using distributions

Combine symbols with other symbols

Convert symbols to continuous values via frequency or rank or Luduan bags

Find cooccurrence with objective outcomes
 Bag tainted objects together weighted by total frequency
 Convert symbolic values back to continuous values by accumulating taints
A True-life Data Story
LOG of the UNITED STATES

Sharon Bear

Rate, Guns,

Making passage from New York to St. Johns A.F.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Knots</th>
<th>Course steered</th>
<th>Winds</th>
<th>Barometer</th>
<th>Temperature</th>
<th>State of the Weather</th>
<th>Forms of Clouds</th>
<th>State of the Sea</th>
<th>Record of the sail the vessel is under at end of watch</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>NE</td>
<td>29.60</td>
<td>53</td>
<td>Dry 44 Wet 44</td>
<td>Light</td>
<td></td>
<td>Steam Alone</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.62</td>
<td>25</td>
<td>Dry 46 Wet 41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noon</td>
<td>5</td>
<td></td>
<td>NE</td>
<td>29.61</td>
<td>16</td>
<td>Dry 45 Wet 48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These data are from one ship on one day.

What if we had data from thousands of ships on tens of thousands of days?

Kept in log books, like this, it would be nearly useless.
19th Century Big Data

These data are from one place over a long period of time.

This chart lets captains understand weather and currents.

And *that* lets them go new places with higher confidence.
Same data, different perspective, massive impact
But it isn't just prettier
A Fake Data Story
Perspective Can Be Key

Given:
 100 real-valued features on colored dots

Desired:
 A model to predict colors for new dots based on the features

Evil assumption (for discussion):
 No privileged frame of reference (commonly done in physics)
These data points appear jumbled

But this is largely due to our perspective
Taking just the first two coordinates, we see more order.

But there is more to be had.
Combining multiple coordinates completely separates the colors.

How can we know to do this just based on the data?
Feature extraction is how we encode domain expertise
A Story of Fake Data (that eventually turned into real data)
Background

Let's simulate a data skimming attack

Transactions at a particular vendor increase subsequent rate of fraud

Background rate of fraud is high

Fraud does not occur at increased rate at skimming locations

We want to find the skimming locations
More Details

Data is generated using a behavioral model for consumers.

Transactions generated with various vendors at randomized times. Transactions are marked as fraud randomly at a baseline rate.

Transacting with a skimmer increases fraud rate for a consumer to increase for some period of time.
Modeling Approach

For all transactions
 If fraud, increment fraud counter for all merchants in 30 day history
 If non-fraud, increment non-fraud counter for all merchants in 30 day history

For all vendors
 Form contingency table, compute G-score
Example 2 - Common Point of Compromise

Card data is stolen from Merchant 0

Skimmed data

That data is used in frauds at other merchants

Merchant 0

Merchant n
Simulation Setup
LLR score for simulated merchants

Compromised Merchant
What about real data from real bad guys?
LLR score for real data

Really truly bad guys

Breach Score (LLR)

Number of Merchants

10^0 10^1 10^2 10^3 10^4 10^5 10^6
We can use cooccurrence to find bad actors.

Cooccurrence also finds "indicators" to be combined as features.
A True Story
Background

Credit card company wants to find payment kiting where a bill is paid, credit balance is cleared, and then the payment bounces

We have:

- 3 years of transaction histories + payment history + payment final status

We want:

- A model that can predict whether a payment will bounce
More Details

A charge transaction includes:
- Date, time, account #, charge amount, vendor id, industry code, location code

Account data includes:
- Name, address, account number, account age, account type

Payment transaction includes:
- Date, time, account #, type (payment, update), amount, flags

Non-monetary transaction includes:
- Date, time, account #, type, flags, notes
Modeling Approach

Split data into first two years (training), last year (test)

For each payment, collect previous 90 days of transactions, ultimate status

Standard transaction features:
 Number of transactions, amount of transactions, average transaction amount, recent bad payment, time since last transaction, overdue balance

Special features:
 Flagged vendor score, flagged vendor amount score
Standard Features

For many features, we simply take the history of each account and accumulate features or reference values.

Thus "current transaction / average transaction"

Or "distance to previous transaction location / time since previous transaction"

Some of these historical features could be learned if we gave the history to a magical learning algorithm.

But suggesting these features is better when training data costs time and money.
Special Features

We can also accumulate characteristics of vendors.

In fact, our data is commonly composed of actions with a subject, verb and object. The subjects are typically consumers and we focus on them. But the objects are worth paying attention to as well.

We can analyze the history of objects to generate associated features:
 - Frequency
 - Distributions
 - Cooccurrence taints
Symbol Frequency as a Feature

Consider an image that is part of your web page

What domains reference these images? (mostly yours, of course)

Any time you see a rare (aka new) domain, it is a thing

We don't know what kind of thing, but it is a thing
Tainted Symbol History as a Feature

We can mark those objects based on their presence in histories with other events AKA cooccurrence with fraud | charge-off | machine failure | ad-click

Now we can accumulate a measure of how many such tainted objects are in a user history

Which cars are involved in accidents?

Which browser versions are used by fraudsters?

Which OS versions of software crashes?
Key Winning Feature

For this model, the feature that was worth over $5 million to the customer was formed as a combination of distribution and cooccurrence

Start with a composite symbol

<merchant-id> / <location-code> / <transaction-size-decile>

Find symbols associated with kiting behavior using cooccurrence

These identified likely money laundering paths

Combined with young accounts, payment channel => over 90% catch rate
Combine techniques to find killer features
Combine techniques to find killer features

Killer features are the ones your competitors aren't using (yet)
Door Knockers
Background

You have a security system that is looking for attackers

It finds naive attempts at intrusion

But the attackers are using automated techniques to morph their attacks

They *will* evade your detector eventually

How can you stop them?
Modeling Approach

Failed attacks can be used as a taint on
 Source IP
 User identities
 User agent
 Browser versions
 Header signatures

If you can do cooccurrence in real-time you can build fast adapting features

The fast adaptation of the attacker becomes a weakness rather than a strength
High attack activity provides good surrogate target variables
Data Exhaust
Background

Everybody knows that it is important to turn off any logging on secondary images and scripts.

The resulting data would be "too expensive" to store and analyze.
This was true in 2004
Spot the Important Difference?

Attacker request
GET /personal/comparison-table HTTP/1.1
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 3.0.4506.2152)
Accept-Encoding: deflate
Accept-Charset: UTF-8
Accept-Language: fr
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive

Real request
GET /photo.jpg HTTP/1.1
Host: lh4.googleusercontent.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36
Accept: image/png,image/*;q=0.8,image/ief,image/jfif,image/jpeg
Accept-Language: en-US,en;q=0.8
Accept-Encoding: gzip, deflate
Referer: https://www.google.com
Connection: keep-alive
If-None-Match: "v9"
Cache-Control: max-age=0
Spot the Important Difference?

Attacker request

GET /personal/comparison-table
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 3.0.04506; .NET CLR 3.5.30729)
Accept-Encoding: deflate
Accept-Charset: UTF-8
Accept-Language: zh
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive

Real request

GET /photo.jpg HTTP/1.1
Host: lh4.googleusercontent.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5; rv:68.0) Gecko/20100101 Firefox/68.0
Accept: image/png,image/*;q=0.8,image/avif,image/webp
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://www.google.com
Connection: keep-alive
If-None-Match: "v9"
Cache-Control: max-age=0
Why are Experts Necessary

You could probably learn a whiz-bang LSTM neural network model for headers.

That model might be surprised by change in order.

It would *definitely* detect too few headers or lower case headers.

But it would take a lot of effort, tuning and expertise to build.

And your security dweeb will spot 15 things to look for in 10 minutes.

You pick (I pick both)
Collecting data exhaust turns the tables on attackers
Summary

Accumulate data exhaust if possible

Accumulate features from history

Convert continuous values into symbols using distributions

Combine symbols with other symbols

Convert symbols to continuous values via frequency or rank or Luduan bags

Find cooccurrence with objective outcomes
 Bag tainted objects together weighted by total frequency
 Convert symbolic values back to continuous values by accumulating taints
The Story isn't Over

Let's work together on examples of this:

```
github.com/tdunning/feature-extraction
```

Several feature extraction techniques are already there, more are coming

You can help!

For data generation, see also

```
github.com/tdunning/log-synth
```
Who Am I?

Ted Dunning

Apache Board Member (but not for this talk)
Early Drill Contributor
tdunning@apache.org

CTO @ MapR, HPE (how I got to talk to these users)
tdunning@mapr.com

Enthused techie
ted.dunning@gmail.com
@ted_dunning
Book signing
HPE booth
at 3:30