Foundations for Successful Data Projects

Strata Data Conference, New York 2019
Ted Malaska | @ted_malaska
Jonathan Seidman | @jseidman
About the Presenters

Ted Malaska

• **Capital One**: Director of Data Engineering
• **Blizzard Ent**: Director of Engineering of Global Insights
• **Cloudera**: Principal Solution Architect
• **FINRA**: Lead Architect
• **Contributor**: Apache Spark, Hadoop, Hive, Sqoop, Yarn, Flume, others
About the Presenters

Jonathan Seidman

- **Cloudera:**
 - Software Engineer
 - Partner Engineering

- **Orbitz:**
 - Technical Lead on the big data team at Orbitz
 - Lead engineer packaging, hotels, etc.

- **Previously:** Internet development
- Co-founder of the Chicago Hadoop User Group and Chicago Big Data
Foundations for Architecting Data Solutions
MANAGING SUCCESSFUL DATA PROJECTS
Ted Malaska & Jonathan Seidman
Foundations of Successful Data Projects

Understand the problem Select software Manage risk Build effective teams Build maintainable architectures
Agenda

• Understanding the key data project types
• Building effective teams
• Selecting data management solutions
• Managing risk in projects
• Ensuring data integrity
• Metadata management
Understanding the Key Data Project Types
Understanding the key data project types

- Major Data Project Types
- Primary Considerations & Risk Management
- Team Makeup
Major Data Project Types

• Data Pipelines and Data Staging
• Data Processing and Analysis
• Application Development
Data Pipelines and Data Staging

- Sourcing Data
- Transmitting Data
- Staging Data
- Accessibility Options
- Discovery
Data Processing and Analysis

- Curating Data
- Cultivating Ideas
- Data Product Generation
 - Reports, Models, Insight, Charts, ...
Application Development

• Traditional or Model Serving
• Inner Loop
• Outer Loop
Primary Considerations

- Data Pipelines and Data Staging
- Data Processing and Analysis
- Application Development
Primary Considerations

Data Pipelines and Data Staging
Data Pipelines and Data Staging – Considerations

- On boarding paths for Data Suppliers
 - Files
 - Embedded code
 - APIs (Rest, WebSocket, GRPC, Syslog, ...)
 - Agents
Data Pipelines and Data Staging – Considerations

- **Transmission**
 - At Least Once, Duplication, Latency, and Ordering
- **Tokenization & Auditing & Governance**
 - GDPR, CA Protection Laws, Misuse, Data Breach
- **Quality**
 - Schema Validation, Rules Validation, Carnality Verification
- **Access**
 - Security, Matching the use case to the storage system
Data Pipelines and Data Staging – Considerations

- **Meta Management**
 - New and mutated Datasets
 - Security

- **Access**
 - Matching the use case to the storage system
 - SQL is King
 - No one tool
 - Trade Offs
 - Cost vs Time to Value vs Value of Data
Primary Considerations

Data Processing and Analysis
Data Processing and Analysis – Considerations

• Curating Data
 • Working with Producers
 • Joining
 • Time series
 • CDC

• Quality of Data
 • SLAs
 • Correctness of the Data
 • Stability of the Data
 • Coupling
Data Processing and Analysis – Considerations

• Cultivating Ideas
 • Defining Real Goals
 • Evaluating ROI

• Productionization of Pipelines
 • Service Reliability Engineering

• Culture
 • ML vs AI vs Engineer
Data Processing and Analysis – Considerations

- Understanding
 - Explainable Outcomes
 - Defendable Solutions

- Promotion Paths
 - Deploying Products
 - Historical Evaluation
 - Up to Date Auditing
Primary Considerations

Application Development
Application Development – Considerations

• Availability and Failure
 • How will it fail
 • How will failure impact customers
 • What level of failure should be tested for
 • Levels of failure design

• State Locality and Consistency
 • What are the requirements
 • Speed, cost, or truth
 • Transactions and Locking
Application Development

• Latency and Throughput
 • Expectations and Throughput
 • Is it really big data?
 • Inner and Outer Looping

• Granularity of Deployments
 • Monolith single deployment
 • Monolith microservices

• Culture
 • Development Towers
 • Over the wall
 • Development Granularity
Building Successful Teams
Lessons Learned Building Big Data Teams
Build well rounded teams

Sysadmins Developers Analysts Data Scientists

Other roles:

Data Protection Officer Product Managers Network/Systems Engineers SRE
Differing Skill Sets

- Detail-Oriented
- Experimental
- The Communicator
- ...
Team Makeup

• Data Pipelines and Data Staging
• Data Processing and Analysis
• Application Development
Data Pipelines and Data Staging – Team Makeup

- Data Engineers
- Site Reliability Engineers (SRE)
- Application Engineers
- Data Architects
- Governance
- Solution Engineers/Architects
Data Processing and Analysis – Team Makeup

- Engineers
 - This can be where having folks with different skill sets can help.
- Site Reliability Engineers (SRE)
Application Development – Team Makeup

- Web Developers
- Front end Developers
- Data Engineers (DBAs)
- Performance Focused Engineers
- SOA / Queue Engineers
- Site Reliability Engineers (SRE)
How to find people?

Start with people you already have, but make sure you invest in training…

Linux, network, DBAs → sysadmins
Developers → developers
 Easy if you’re at a company like Orbitz, otherwise maybe not so much
Analysts → analysts
It’s not an easy path though
 Set goals instead of micro-managing development
 Be prepared to iterate, don’t be afraid to fail
Also don’t forget other teams

Communication is key

DBAs

Other Project Teams
Hi Jonathan,

If you are interested in the following Hadoop Data Scientist/Administrator position in downtown Chicago, please email your resume and salary requirements to me.

- Develop and extend in-house data toolkits based in Python and Java.
- Consult and educate internal users on Hadoop technologies.
- Improve the performance of financial analytics platforms built around the Hadoop ecosystem.

Qualifications:

- 3+ years of experience working with Hadoop 2 (YARN), cluster management experience preferable
- 3+ year of experience with Hadoop SQL interfaces including Hive and Impala
- 2+ years of experience developing solutions using Spark
- Strong systems background, preferably including Linux administration
- Unix scripting experience (bash, tcsh, zsh, python, etc)
- Experience with DevOps tools such as SALT and Puppet as part of a CI/CD development and deployment process.
- Demonstrated ability to troubleshoot and conduct root-cause analysis
Data Scientists

Admins
Think beyond just skills

Also look for complementary personalities
And avoid toxic personalities
 But what if they’re really talented?
 See above.
Customer Engagement

Your teams should work closely with your customers, whether they’re external or internal
Evaluating and Selecting Data Solutions
Evaluating and Selecting Data Solutions

- Solution Life Cycles
- Tipping Point Considerations
- Considerations for Technology Selection
Solution Life Cycles

- Private Incubation Stage
- Release Stage
- “Curing Cancer” Stage
- Broken Promises Stage
- Hardening Stage
- Enterprise Stage
- Decline and Slow Death Stage
Private Incubation Stage

- Technology Trigger
- Vision
Release Stage

• Changes
 • Inviting People In
 • Documentation
 • Marketing

• Reasons for Releasing
 • Money
 • Hiring
 • Culture
 • Future Building

• Big Promises
“Curing Cancer” Stage

- Big Promise
- Maybe outside area of expertise
 - Promise to push internally
 - Promises to gain influence
 - Promises to get attriations
- Promises can be good and bad
Broken Promises Stage

- Cracks in the Dream
 - Scale
 - Usability
 - Use Case
 - Security
 - Practicality
 - Skill Requirements
 - Auditability
 - Maintainability
 - Integration
 - Quality
 - Lies
Hardening

- Balance Features
- Technical Debt
- Partnering
- Corp Partnerships
- Leadership Stories
- Easy Success Paths
Enterprise Stage

- Stable
- Predictable
- Easy to hire for
- Supportable / Maintainable
- Pragmatists outnumber innovators
- No longer cool, but still very lucrative
Slow Decline Stage

- Not Worth Retiring
- Not worth Investing In
- Good Enough
Tipping Point Considerations

- Mavericks
- Connectors
- Salesman
- Stickiness
- Context
Mavericks

- Passion Driven
- Helpful
- Bottom Up Power
- They see the future or may see shadows
Connectors

• High triangles
• Trusted weak ties
• Gateways for pain, needs, and opportunities
• Considering the towered companies
Sales Man

• Make the Deal Happen
• Right or wrong doesn’t matter as much as action
• Momentum starters
Stickiness

Think about gravity

- Data
- Code
- User’s Favor
- Results
Context

• Where is the company

• Looking for Opportunities
 • Holding down the fort
 • Lower cost
 • Play around

• The Swing Pendulum Effort
 • Where is the ball now and where is it heading
Tipping Point Considerations

- Mavericks
- Connectors
- Salesman
- Stickiness
- Context
Considerations for Technology Selection

- Demand
- Fit
- Visibility
- Risks
Evaluating the Demand

- Business Needs
- Internal Demand
- Desire to live on the edge
Evaluating the Fit

- Primary Capability
- Skill Sets
- Level of Commitments
- Level of Alignment
Evaluating the Visibility

- Benchmarks
 - Hidden biases, Motivated Biases, Unfair Comparisons
- Fundamentals
 - There is no magic
- Leaders Success
- Market Trends
Reviewing Fundamentals

- Relative Location of Data to Readers
- Compression formats and rates
- Data Structures
- Partitioning, Replication, and Failure
- API and Interfaces
- Resource Allocations and Tuning
Reviewing Market Trends

Google Trends
Reviewing Market Trends

GitHub activity
Reviewing Market Trends

Jira Counts and Charts

Created vs Resolved Issues Report

This chart shows the number of issues created vs the number of issues resolved in the last 30 days.
Reviewing Market Trends

Conferences and meetups
Reviewing Market Trends

Also:

• Community Interest
• Email Lists and Forums
• Contributors
• Follow the Money $$$
Evaluating the Risks

• Risk Tolerance
• Stress Tolerance
• Leader vs follower
Future Proofing

• Assume Change
• Interface Design
• Producer & Consumer Experience
Assume Change

• Remember the Logic and Physical
• Think Logical and Implementation
Interface Design

- Standards
- SQL
- DataFrames / DataSets
- REST, GRPC
- AVRO, Parquet, Protobuf, Thrift, JSON, CSV
Managing Project Risk
Managing Risk

1 in 11.5 million

1 in 4292
Internal Server Error

The server encountered an internal error or misconfiguration and was unable to complete your request.

Please contact the server administrator, admin@localhost and inform them of the time the error occurred, and anything you might have done that may have caused
Managing Risk – Risk Categories

Technology Risk

Team Risk

Requirements Risk
Managing Risk – Categorizing Risk
Managing Risk – Categorizing Risk
Managing Risk – Categorizing Risk
Risk Weighting

Technology Risk

• How much experience do we have with this technology?
• Do we have production experience with the technology?
• We know SQL, but what about Cassandra CQL?
• ...

[Image and logo]
Risk Weighting

Team Risk
- Experience level of team members
- Team skill sets
- Size of team
- ...

Don’t forget about other teams
- System dependencies
- ...

Risk Weighting

Requirements Risk

• Vaguely defined requirements
• Novel requirements (e.g. stringent latency requirements)
Categorizing Risk

Cassandra
- Limited technical experience (team risk)
- Need to validate data model (reqs risk)
- Stringent uptime requirements (tech risk)
Mitigating Risk

Requirements Risk

- Ensure good functional requirements
- Break requirements up – don’t boil the ocean
- Share requirements and get buy-in from all stakeholders
- Get agreement on scope
Mitigating Risk

Technology Risk
• Tackle important/complex components first
• Use external resources to help fill knowledge gaps
• Consider replacing riskier technologies with more familiar ones
Mitigating Risk

Technology Risk

• Use proofs of concept
 • Than throw them away
Mitigating Risk

Technology Risk

• Use abstractions to minimize dependencies
• Ensure repeatable build, deployment, monitoring processes
• Make it easy to deploy dev environments – leverage containers, etc.
Mitigating Risk

Technology Risk
 • Start building early
Mitigating Risk

Team Risk

• Build well rounded teams
• Ensure communication with other teams
 • But work to reduce coupling
Communicating Risk

• Make sure stakeholders are aware of risks
 • But remember there can be risks to overstating risk
• Collaborate and get buy-in
• Share risk
• Risk can be a negotiation tool
ON A SPRING AFTERNOON IN 2014, Brisha Borden was running
late to pick up her god-sister from school when she spotted an
unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden
and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stuff.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.
WEAPONS OF
MATH DESTRUCTION

HOW BIG DATA INCREASES INEQUALITY
AND THREATENS DEMOCRACY

CATHY O’NEIL

"This is a manual for the 21st-century citizen, and it succeeds where other big data accounts have failed—it is accessible, refreshing."
• Compliance
Ensuring Data Integrity
Ensuring Data Integrity

- Pre-defined vs Derived via Discovery
- Path of Fidelity
- Validation of Quality
Pre-Defined vs Derived via Discovery

- Producer - Productivity vs Audit
- Consumer - Consistency
Producer - Productivity vs Audit

Easy to Audit

- Red Tape Predefined
- Flexible/Limited Predefined
- After the Fact Discovery

Short - Term Productivity
Predefined Traps

- Centralized Reviewing Org
- High bar to on board
- Unclear schema evolution paths
Discovery Traps

- Uncommon output
- Data quality standards
- Uncommon SLAs
- The balloon problem
Consumers Point of View

- Consistency is Key
- Access to Powerful Tools
- Multiple Landing Areas is Key
 - Long Term
 - Indexed
 - Lucene Indexed
 - Streams
- Future Proofing
Path of Fidelity

- What is Fidelity?
- What can we mutate?
What is Full Fidelity

• The cells and their values are preserved
• Field names and definitions are preserved
• No matter where or how you access the data
• No Filtering
• No Irreversible Mutations
What can we mutate

- Tokenization
- Underlining files
- Storage system
- Access Path
Validate Quality

• Validation of Fidelity
• Validation of Quality
Validation of Fidelity

• Row Counts
• Check Sums
• Reversible byte by byte check
Validation of Quality

- Column level rules
- Null counts
- Field carnality
- Record counts
Metadata Management
Some History
Metadata Management

What do we mean?
• Understanding what data you have
• Knowing what the data is
• Knowing where the data is

This is complex
• Large number of data sources, storage systems, processing…
• Ease of data access and creation of new data sets
• Start planning at the beginning of your project!
Why Do We Care?

Visibility – know what data you collect and how to access it

• Faster time to market
• Avoid duplication of work
• Derive more value from data
• Identify gaps
Why Do We Care?

Relationships between datasets
Why Do We Care?

Regulations

GDPR, etc.
Types of Metadata

• Data at rest
• Data in motion
• Source data
• Data processing
• Reports, dashboards, etc.
Data At Rest

Files, database tables, Lucene indexes, etc.
Data At Rest – Database Table Example

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>User_id</td>
<td>Long</td>
</tr>
<tr>
<td>Receipt_num</td>
<td>Long</td>
</tr>
<tr>
<td>Item_purchased_id</td>
<td>Long</td>
</tr>
<tr>
<td>Amount</td>
<td>Decimal(7,2)</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Timestamp</td>
</tr>
<tr>
<td>Method</td>
<td>String</td>
</tr>
<tr>
<td>Card_id</td>
<td>Long</td>
</tr>
<tr>
<td>Purchased_port</td>
<td>String</td>
</tr>
</tbody>
</table>
Data At Rest – Other Metadata Types

Audit Logs
Data At Rest – Other Metadata Types

Comments
Data At Rest – Other Metadata Types

Tags
Data At Rest – Other Metadata Types

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>User_id</td>
<td>Long</td>
</tr>
<tr>
<td>Receipt_num</td>
<td>Long</td>
</tr>
<tr>
<td>Item_purchased_id</td>
<td>Long</td>
</tr>
<tr>
<td>Amount</td>
<td>Decimal(7,2)</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Timestamp</td>
</tr>
<tr>
<td>Method</td>
<td>String</td>
</tr>
<tr>
<td>Card_id</td>
<td>Long</td>
</tr>
<tr>
<td>Purchased_port</td>
<td>String</td>
</tr>
</tbody>
</table>
Data In Motion

This is data that’s moving through the system
 • Batch or streaming ingestion
 • Data processing
 • Derived data
Data in Motion – What to Capture

- Paths
- Sources
- Transformations
- Destinations
- Reports/Dashboards
Data in Motion – Paths

How does the data move through the system?

• Source systems
• Data collection systems
• Routing
• Transformations
• Etc.
Source Data

- External systems
- Internal systems
Data In Motion – Transformations

• Data format changes, for example JSON to protocol buffers
• Data fidelity – is the data filtered or changed?
• Metadata about processing – job names, technologies, inputs, outputs, etc.
Data Processing – Machine Learning

More complex algorithms can require special considerations

• Purpose of a model
• Technologies, algorithms, etc.
• Features
• Datasets – training, test, etc.
• Goals of the model
• Who owns the model?
Reports and Dashboards

• Data sources
• Any data transformations
• Information on the report’s creator
• Log of modifications
• Purpose of report
• Tags
Approaches to Metadata Collection

Declarative
• Require and enable metadata to be created as data is added to the system

Discovery
• After the fact cataloging of data
How?

- Create your own solution
- Use tools provided by your vendor
- Use third party tools
- Some or all of the above
Remember…

The perfect is the enemy of the good

or…

Having something is better than nothing
Where else to find us

• Author signing, Wednesday at 10:50am-11:20am
 • O’Reilly booth in the expo hall.
Thank you!

Ted Malaska | @ted_malaska
Jonathan Seidman | @jseidman