The Presto Cost-Based Optimizer for interactive SQL on anything

Strata Data Conference - London
May 1, 2019

Wojciech.Biela@starburstdata.com
Piotr.Findeisen@starburstdata.com
Agenda

• Who we are?
• Presto - quick recap
• Presto’s CBO launch
• Recent CBO enhancements
• CBO Roadmap
Founded by Presto committers:
- Over 4 years of contributions to Presto
- Presto distro for on-prem and cloud env
- Supporting large customers in production
- Enterprise subscription add-ons

Notable features contributed:
- ANSI SQL syntax enhancements
- Execution engine improvements
- Security integrations
- Spill to disk
- Cost-Based Optimizer

https://www.starburstda.com/presto-enterprise/
Starburst Presto & Cloud

Presto
Project History

FALL 2012
4 developers start Presto development

FALL 2013
Facebook open sources Presto

SPRING 2015
Teradata joins the community, begins investing heavily in the project

SUMMER 2017
180+ Releases
50+ Contributors
5000+ Commits

WINTER 2017
Starburst is founded by a team of Presto committers, Teradata veterans

WINTER 2019
Presto Software Foundation established
The Presto fan club

See more at https://github.com/prestosql/presto/wiki/Presto-Users
Presto in Production

- **Facebook**: 10,000+ of nodes, HDFS (ORC, RCFile), sharded MySQL, 1000s of users
- **Uber**: 2,000+ nodes (clusters on prem.) with 160K+ queries daily over HDFS (Parquet/ORC)
- **Twitter**: 2,000+ nodes (several clusters on premises and GCP), 20K+ queries daily (Parquet)
- **LinkedIn**: 500+ nodes, 200K+ queries daily over HDFS (ORC), and ~1000 users
- **Lyft**: 400+ nodes in AWS, 100K+ queries daily, 20+ PBs in S3 (Parquet)
- **Netflix**: 300+ nodes in AWS, 100+ PB in S3 (Parquet)
- **Yahoo! Japan**: 200+ nodes for HDFS (ORC), and ObjectStore
- **FINRA**: 120+ nodes in AWS, 4PB in S3 (ORC), 200+ users
Why Presto?

Community-driven open source project

High performance ANSI SQL engine
- New Cost-Based Query Optimizer
- Proven scalability
- High concurrency

Separation of compute and storage
- Scale storage and compute independently
- No ETL or data integration necessary to get to insights
- SQL-on-anything

No vendor lock-in
- No Hadoop distro vendor lock-in
- No storage engine vendor lock-in
- No cloud vendor lock-in

© 2019
Built for Performance

Query Execution Engine:

• MPP-style **pipelined** in-memory execution
• **Vectorized** data processing
• Runtime query **bytecode generation**
• Memory efficient **data structures**
• Multi-threaded **multi-core execution**
• Optimized readers for **columnar formats** (ORC and Parquet)
• Predicate and column projection **pushdown**
• Now also **Cost-Based Optimizer**
Presto CBO
Before we optimize ...

Join in Presto

- Hash Join
- Right table is in memory ("build table")
- Left table is streamed ("probe table")
- Can be broadcast or repartitioned
Before we optimize ...

Join in Presto

- Hash Join
- Right table is in memory ("build table")
- Left table is streamed ("probe table")
- Can be broadcast or repartitioned

- A join can be followed by a join, can be followed by a join…
CBO in a nutshell

Cost-Based Optimizer v1 includes:

• **join reordering** based on selectivity estimates and cost
• automatic **join type** selection (repartitioned vs broadcast)
• automatic left/right **side selection** for joined tables
• support for **statistics** stored in Hive Metastore

https://www.starburstdata.com/technical-blog/
Cost and Statistics

Cost calculation includes:

• CPU
• Memory usage
• Network I/O

Hive Metastore statistics:

• number of rows in a table
• number of distinct values in a column
• fraction of NULL values in a column
• minimum/maximum value in a column
• average data size for a column
Join left/right side decision

From
- Distributed Join
 - Small table
 - Large table
 - Kept in distributed join operator memory

To
- Distributed Join
 - Large table
 - Large table
 - Small table
 - Kept in distributed join operator memory
Join type selection

From

Distributed Join

reshuffle

Large table

Expensive to reshuffle

Small table

Cheap to broadcast

To

Broadcast Join

no reshuffle!

Large table

Expensive to reshuffle

Small table

Cheap to broadcast

broadcast
"Which customers are spending the most at our shop?"

```
SELECT c.custkey, sum(l.price)
FROM customer c
JOIN orders o ON c.custkey = o.custkey
JOIN lineitem l ON o.orderkey = l.orderkey
GROUP BY c.custkey
ORDER BY sum(l.price) DESC;
```
Join reordering with filter

"Which customers are spending the most on coffee?"

SELECT c.custkey, sum(l.price)
FROM customer c
JOIN orders o ON c.custkey = o.custkey
JOIN lineitem l ON o.orderkey = l.orderkey
WHERE l.item = 'coffee'
GROUP BY c.custkey
ORDER BY sum(l.price) DESC;
Join reordering with filter

Join on orderkey
lineitem
61M rows
61M rows

orders
15M rows

Join on custkey

15M rows

customer
1.3M rows

orders
15M rows

~3K rows

Join on custkey
customer
1.3M rows

~3K rows

Join on orderkey
orders
15M rows

Filter item = 106170
~3K rows

lineitem
61M rows
Presto CBO Speedup
Duration of TPC-DS queries (lower is better)

https://www.starburstdata.com/presto-benchmarks/
Cloud cost reduction

- on average 7x improvement vs EMR Presto (up to 18x faster!)
- EMR Presto cannot execute many TPC-DS queries (all pass on Starburst Presto)
- on average 4x improvement on simpler queries benchmark (TPC-H, 3rd party benchmark)

https://www.starburstdata.com/presto-aws/
https://www.concurrencylabs.com/blog/starburst-presto-vs-aws-emr-sql/
Enhancements to date

- Deciding on semi-join distribution type based on cost
 - "... WHERE x IN (SELECT y FROM ...)") queries
- Capping a broadcasted table size
- Various minor fixes in cardinality estimation
- Peak memory estimation (more meaningful memory cost metric)
Collecting statistics

• ANALYZE table
 • native in Presto
 • Hive runtime no longer needed to collect stats

• Collecting table statistics on write
 • low overhead, the data is being processed in memory

• Stats for AWS Glue Catalog
 • Glue does not provide statistics support out of the box
 • exclusive from Starburst
Statistics in other connectors

- CBO initially supported with Hive connector only
- We added stats for RDBMS connectors (Starburst)
 - PostgreSQL
 - MySQL
 - SQL Server
 - Teradata
 - Oracle
- Enables CBO in federation use-cases
What’s next

• Stats support
 • Improved stats for Hive and Glue, e.g. NDV estimates across partitions
 • Stats for NoSQL connectors

• Core CBO and engine enhancements
 • Involve connectors in optimizations ("*-pushdown")
 • Peak memory-based decisions
 • Adjust cost model weights based on the hardware
 • Cost and stats for more operation types
 • Introduce Traits — consider alternative plans during optimizations
 • Late materialization
 • Adaptive optimizations
Further reading

https://prestosql.io/

https://www.starburstdata.com/technical-blog/

https://fivetran.com/blog/warehouse-benchmark

https://www.concurrencylabs.com/blog/starburst-presto-vs-aws-emr-sql/

Thank You!

Twitter: @starburstdata @prestosql
Blog: www.starburstdata.com/technical-blog/
Newsletter: www.starburstdata.com/newsletter
Rate today’s session

We’re living in a new era of constant sabotage, misinformation, and fear, in which everyone is a target, and you’re often the collateral damage in a growing conflict among states. From crippling infrastructure to sowing discord and doubt, cyber is now the weapon of choice for democracies, dictators, and terrorists.

David Sanger explains how the rise of cyberweapons has transformed geopolitics like nothing since the invention of the atomic bomb. Moving from the White House Situation Room to the dens of Chinese, Russian, North Korean, and Iranian hackers to the boardrooms of Silicon Valley, David reveals a world coming face-to-face with the perils of technological revolution—a conflict that the United States helped start when it began using cyberweapons against Iranian nuclear plants and North Korean missile launches. But now we find ourselves in a conflict we’re uncertain how to control, as our adversaries exploit vulnerabilities in our hyperconnected nation and we struggle to figure out how to deter these complex, short-of-war attacks.

David Sanger
The New York Times

David E. Sanger is the national security correspondent for The New York Times as well as a national security and political contributor for CNN and a frequent guest on CBS This Morning, Face the Nation, and many PBS shows.