Continuous Intelligence

Moving Machine Learning Application into Production Reliably

Christoph Windheuser
Danilo Sato
Emily Gorcenski
Arif Wider

WORKSHOP ON WHY AND HOW TO APPLY CONTINUOUS DELIVERY TO MACHINE LEARNING (CD4ML)

ThoughtWorks®
Structure of Today’s Workshop

- INTRODUCTION TO THE TOPIC
- EXERCISE 1: SETUP
- EXERCISE 2: DEPLOYMENT PIPELINE
- BREAK
- EXERCISE 3: ML PIPELINE
- EXERCISE 4: TRACKING EXPERIMENTS
- EXERCISE 5: MODEL MONITORING
TECHNIQUES

Continuous delivery #8 for machine learning (CD4ML) models

ASSESS
CONTINUOUS INTELLIGENCE CYCLE

1. Acquire
Values attributed to parameters.

2. Store, clean, curate, featurize
Data that has meaning and is fit for consumption and analysis.

3. Model
Understanding, predicting, forecasting and pattern discovery.

4. Productionize
Planning and prioritizing actions. Hypothesis testing.

5. Execute
Changing the real world!
CD4ML isn’t a technology or a tool; it is a practice and a set of principles. Quality is built into software and improvement is always possible.

But machine learning systems have unique challenges; unlike deterministic software, it is difficult—or impossible—to understand the behavior of data-driven intelligent systems. This poses a huge challenge when it comes to deploying machine learning systems in accordance with CD principles.

PRODUCTIONIZING ML IS HARD

HOW DO WE APPLY DECADES OF SOFTWARE DELIVERY EXPERIENCE TO INTELLIGENT SYSTEMS?

Production systems should be:

- Reproducible
- Testable
- Auditable
- Continuously Improving

©ThoughtWorks 2019
Strata Data Conference London, April 30, 2019
Production systems should be:

- Reproducible
- Testable
- Auditable
- Continuously Improving

Machine Learning is:

- Non-deterministic
- Hard to test
- Hard to explain
- Hard to improve

CD4ML isn’t a technology or a tool; it is a practice and a set of principles. Quality is built into software and improvement is always possible.

But machine learning systems have unique challenges; unlike deterministic software, it is difficult—or impossible—to understand the behavior of data-driven intelligent systems.

This poses a huge challenge when it comes to deploying machine learning systems in accordance with CD principles.
MANY SOURCES OF CHANGE

Data
- Schema
- Sampling over Time
- Volume
 ...

Model
- Research, Experiments
- Training on New Data
- Performance
 ...

Code
- New Features
- Bug Fixes
- Dependencies
 ...

Icons created by Noura Mbarki and I Putu Kharismayadi from Noun Project
“Continuous Delivery is the ability to get changes of all types — including new features, configuration changes, bug fixes and experiments — into production, or into the hands of users, safely and quickly in a sustainable way.”

- Jez Humble & Dave Farley
PRINCIPLES OF CONTINUOUS DELIVERY

→ Create a Repeatable, Reliable Process for Releasing Software
→ Automate Almost Everything
→ Build Quality In
→ Work in Small Batches
→ Keep Everything in Source Control
→ Done Means “Released”
→ Improve Continuously
WHAT DO WE NEED IN OUR STACK?

Doing CD with Machine Learning is still a hard problem

- Discoverable and Accessible Data
- Version Control and Artifact Repositories
- Continuous Delivery Orchestration to Combine Pipelines
- Infrastructure for Multiple Environments and Experiments
- Model Performance Assessment Tracking
- Model Monitoring and Observability
PUTTING EVERYTHING TOGETHER

Discoverable and Accessible Data

CD Tools and Repositories

Data Science, Model Building

Model Evaluation

Production Model

Integration Testing

Deployment

Monitoring

Source Code + Executables

Model + parameters

Training Data

Test Data

Production Data

©ThoughtWorks 2019
Strata Data Conference London, April 30, 2019
WHAT WE WILL USE IN THIS WORKSHOP

There are many options for tools and technologies to implement CD4ML
THE MACHINE LEARNING PROBLEM WE ARE EXPLORING TODAY
A REAL BUSINESS PROBLEM

RETAIL / SUPPLY CHAIN
Loss of sales, opportunity cost, stock waste, discounting

REQUIRES
Accurate Demand Forecasting

TYPICAL CHALLENGES
→ Predictions Are Inaccurate
→ Development Takes A Long Time
→ Difficult To Adapt To Market Change Pace
SALES FORECASTING FOR GROCERY RETAILER

Make predictions based on data from:

- 4,000 items
- 50 stores
- 125,000,000 sales transactions
- 4.5 years of data

TASK:
Predict how many of each product will be purchased in each store on a given date
As a buyer, I want to be able to choose a product and predict how many units the product will sell at a future date.
EXERCISE 1: SETUP

https://github.com/ThoughtWorksInc/continuous-intelligence-workshop

- Click on instructions → 1-setup.md
- Follow the steps to setup your local development environment

DEPLOYMENT PIPELINE

Automates the process of building, testing, and deploying applications to production

Application code in version control repository

Container image as deployment artifact

Deploy container to production servers

©ThoughtWorks 2019
Strata Data Conference London, April 30, 2019
An Open Source Continuous Delivery server to model and visualise complex workflows
ANATOMY OF A GOCD PIPELINE

Pipeline Group

Tasks

Jobs

Stage

Pipeline

©ThoughtWorks 2019
Strata Data Conference London, April 30, 2019
EXERCISE 2: DEPLOYMENT PIPELINE

https://github.com/ThoughtWorksInc/continuous-intelligence-workshop

- Click on instructions → 2-deployment-pipeline.md
- Follow the steps to setup your deployment pipeline
- GoCD URL: https://gocd.cd4ml.net
BUT NOW WHAT?

Once your model is in production...

- How do we retrain the model more often?
- How to deploy the retrained model to production?
- How to make sure we don’t break anything when deploying?
- How to make sure that our modeling approach or parameterization is still the best fit for the data?
- How to monitor our model “in the wild”?
BASIC DATA SCIENCE WORKFLOW

1. Gather data and extract features
2. Separate into training and validation sets
3. Train model and evaluate performance
SALES FORECAST MODEL TRAINING PROCESS

- download_data.py
- splitter.py
- Training Data
- Validation Data
- decision_tree.py
- evaluation.py
- model.pkl
- metrics.json
CHALLENGE 1: THESE ARE LARGE FILES!
CHALLENGE 2: AD-HOC MULTI-STEP PROCESS
SOLUTION: dvc

data science version control

- dvc is git porcelain for storing large files using cloud storage
- dvc connects model training steps to create reproducible workflows
ANATOMY OF A DVC COMMAND

```
dvc run -d src/download_data.py
-o data/raw/store47-2016.csv python src/download_data.py
```

This runs a command and creates a `.dvc` file. The dvc file points to the dependencies. The output files are versioned and stored in the cloud by running `dvc push`.

When you use the output files (`store47-2016.csv`) as dependencies for the next step, a pipeline is automatically created.

You can re-execute an entire pipeline with one command: `dvc repro`
EXERCISE 3: MACHINE LEARNING PIPELINE

https://github.com/ThoughtWorksInc/continuous-intelligence-workshop

- Click on instructions → 3-machine-learning-pipeline.md
- Follow the steps on your local development environment and in GoCD to create your Machine Learning pipeline
HOW DO WE TRACK EXPERIMENTS?

We need to track the scientific process and evaluate our models:

- Which experiments and hypothesis are being explored?
- Which algorithms are being used in each experiment?
- Which version of the code was used?
- How long does it take to run each experiment?
- What parameter and hyperparameters were used?
- How fast are my models learning?
- How do we compare results from different runs?
An Open Source platform for managing end-to-end machine learning lifecycle
EXERCISE 4: TRACKING EXPERIMENTS

https://github.com/ThoughtWorksInc/continuous-intelligence-workshop

- Click on instructions → 4-tracking-experiments.md
- Follow the steps to track ML training in mlflow
- MLflow URL: https://mlflow.cd4ml.net
HOW TO LEARN CONTINUOUSLY?

We need to capture production data to improve our models:

- Track model usage
- Track model inputs to find training-serving skew
- Track model outputs
- Track model interpretability outputs to identify potential bias or overfit
- Track model fairness to understand how it behaves against dimensions that could introduce unfair bias
EFK STACK

Monitoring and Observability infrastructure

fluentd

Open Source data collector for unified logging

elasticsearch

Open Source Search Engine

kibana

Open Source web UI to explore and visualise data
An Open Source UI that makes it easy to explore and visualise the data index in Elasticsearch
EXERCISE 5: MODEL MONITORING

https://github.com/ThoughtWorksInc/continuous-intelligence-workshop

- Click on instructions → 5-model-monitoring.md
- Follow the steps to log prediction events
- Kibana URL: https://kibana.cd4ml.net
SUMMARY - WHAT HAVE WE LEARNED?
CD4ML

- Proper data/model versioning tools enable reproducible work to be done in parallel.
- No need to maintain complex data processing/model training scripts.
- We can then put data science work into a Continuous Delivery workflow.
- **Result:** Continuous, on-demand AI development and deployment, from research to production, with a single command.
- **Benefit:** production AI systems that are always as smart as your data science team.
THANK YOU!

Danilo Sato
Christoph Windheuser
Emily Gorcenski
Arif Wider

(dsato@thoughtworks.com)
(cwindheu@thoughtworks.com)
(egorcens@thoughtworks.com)
(awider@thoughtworks.com)