Turn Devices into Data Scientists

Simon Crosby, CTO, @swim
How will edge devices get “smart”?

Send data to the cloud:
- Too much data
- REST+ Big Data is too slow
- Streaming data pipelines are still a mystery

Train in the cloud, inference @ edge:
- Who builds the model?
- How is the model distributed to the edge?
- How to make models robust?
Big Data or Big Mistake?

- Goal: 0.5% increased ROI per year on $1B CapEx
- 70 samples per degree x 360° x 1000 RPM
- > 50 PB / year
- x 40 Compressors
NVIDIA Jetson TX2
Quad ARM® A57/2 MB L2
NVIDIA Pascal™, 256 CUDA cores

$200
…to route vehicles through a city without stops…

- Processing 4TB / day @ edge vs $5,000/month in the cloud
- Enabling a new market for insights
And...

To track & map millions of RFID tags in real-time
With 70% cuts in bandwidth & storage, 50% cut in datacenter cost

$90
How?

- Build a digital twin model of the real world directly from streaming data
- Digital twins collaborate to analyze, train & predict system behavior
Cloud apps are REST, stateless & database centric

“Edge” applications are data driven
"Edge" applications are **data driven**

<table>
<thead>
<tr>
<th>Database centric</th>
<th>Data Driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze Past Data</td>
<td>Analyze Present Data</td>
</tr>
<tr>
<td>Operate on Data Graphs</td>
<td>Operate in Data Graphs</td>
</tr>
<tr>
<td>Memory Limited</td>
<td>TimeLimited</td>
</tr>
<tr>
<td>Highly Centralized</td>
<td>Horizontally Decentralized</td>
</tr>
</tbody>
</table>
Edge Apps Need a Different Paradigm

1. The real world is stateful
2. Vast amounts of data of ephemeral value
3. Need current insights to drive a real-time response
4. Dynamic discovery of real-world context is crucial
Data Driven Intelligence

- Learning & Prediction
- Queries
- Analytics
- Custom logic

MapReduce
Graph
Relational
Queries
Swim is an open source edge intelligence platform that makes it easy to build stateful, distributed edge applications that stream insights in real-time.
Cloud architecture challenges
Cloud architecture challenges

- Networking
- Lambda
- Database lookup & store
- Processing

- Networking: 250 ms
- Lambda: 500 ms
- Database lookup & store: 25 ms
- Processing: 0.1 ms

775.1 ms

~10,000 x slower
Wastes 3BN cycles/event
A New Edge Architecture

- Stateful, distributed edge computing – a “web of things”
- Active “digital twins” are “things” that process their own data
- Use data to build a digital twin model of real world relationships
- Digital twins share state, collaborate, learn & predict in real-time
Stateful Means Vertically Integrated
Use Data to Build the Model

- Developer defines entities & relationships (schema)
- Data builds a stateful, distributed, digital twin model of the real-world
- Twins collaborate to analyze, learn, predict and respond on the fly
- Twins continuously stream real-time insights to UIs & applications

* Saves data you need to keep – just *not on the hot path*
1. Build a resilient, self-managing fabric that spans edge, fog and cloud-hosted instances
2. Create a stateful “digital twin” for each real-world entity in the data
3. Each digital twin statefully reduces, labels & analyzes its data

Distribute the Stack “Edge to Cloud”
Application

Swim Fabric

1000m
Twins collaborate to deliver system-wide insights
For the Win

1. Models built by data are “constructive” – they work in multiple settings with no need for re-calibration / training

2. Digital twins that learn use simpler models that can easily fit on small GPUs (eg: Jetson) or CPUs

3. Over- and under-fitting are not problematic – models are highly specific and aim to predict just a single system’s behavior

4. Learning at the edge on full-resolution data leaves less to chance

5. Train on more data than you could ever store
SWIM Empowers Developers

<table>
<thead>
<tr>
<th>Swim Capabilities</th>
<th>Swim Innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time application responses</td>
<td>Twins that process their data in real-time, linked to others with twin-twin backpressure</td>
</tr>
<tr>
<td>Streaming state updates</td>
<td>WARP streaming</td>
</tr>
<tr>
<td>Live UIs</td>
<td>Swim “in the browser”</td>
</tr>
<tr>
<td>Fast and easy to build</td>
<td>Persistence without a database, messaging without a broker, scheduling without a job manager, business logic without an app server</td>
</tr>
<tr>
<td>Economical to run</td>
<td></td>
</tr>
</tbody>
</table>
• 2000 readers and ~10,000 reads / sec
• Millions of tagged assets
• Each tag gets “seen” by multiple readers
• Tag read database of terabytes
• Computationally intense to process
Digital Twins

\[\text{i_saw_you(response, RSSI)} \]

\[\text{(TAG, RSSI)} \]
• **RSSI**: Received Signal Strength Indicator
• Signal strength variation means we need to “learn” the RF power distribution

• Then use **DeLaunay Triangulation** to compute position of each tag
- Smart assembly line tracks & maps tags by linking to their updates
- Geo-Fence enables tracking of sub-assemblies
Swim
Swim Architecture

- Builds an efficient, stateful, lock-free, parallel edge data processing fabric across a set of compute instances – embedded, fog & cloud
- Swim is a 2MB library added to the JVM
- Security is fundamental – from boot to analysis and data custody
Swim Fabric

- Digital twins are stateful, persistent, active objects that process their own data
- Communication is real-time, non-blocking, and focused on eventual consistency
- Tasks automatically migrate to the optimal instance and are resilient to failure
- Instances share state changes via an eventually consistent protocol
Developers Model

Fabric is a real-time runtime for distributed “web agents”

Digital Twins are stateful distributed objects created from data streams, on the fly

- **Lanes** are object members
 - Properties and methods eg: “average”
 - Hold state, have logic eg “reduce”
 - Streamed as updates over links

- **Links** are relationships between web agents
 - Build a graph that expresses real-world relationships
 - “Subscribe” to Lanes and observe current state
 - Express computational constructs eg: “join” or “near”

- **Plane** is a collection of actor definitions (an app)
 - Includes naming, resolving, routing & security
Demos

- http://ripple.swim.ai
- http://traffic.swim.ai/dashboard/
- http://traffic.swim.ai/dark/