The magic behind your Lyft ride prices
A case study on machine learning and streaming

Strata Data, San Francisco, March 27th 2019

Rakesh Kumar | Engineer, Pricing
Thomas Weise | @thweise | Engineer, Streaming Platform

go.lyft.com/dynamic-pricing-strata-sf-2019
Agenda

- Introduction to dynamic pricing
- Legacy pricing infrastructure
- Streaming use case
- Streaming based infrastructure
- Beam & multiple languages
- Beam Flink runner
- Lessons learned
Pricing
Dynamic Pricing
Supply/Demand curve
ETA

Fraud
Behaviour Fingerprinting
Monetary Impact
Imperative to act fast

Core Experience
Top Destinations

User Delight
Notifications
Detect Delays
Coupons

Select Lyft

Current location 2455

Shared
Lyft

£12
£166

FREE
£34.93

Schedule
Personal + Credits
Introduction to Dynamic Pricing
What is prime time?

Location + time specific multiplier on the base fare for a ride

e.g. "in downtown SF at 5:00pm, prime time is 2.0"

Means we double the normal fare in that place at that time

Location: geohash6 (e.g. ‘9q8yyq’)

Time: calendar minute
Why do we need prime time?

- Balance supply and demand to maintain service level
- State of marketplace is constantly changing
- "Surge pricing solves the wild goose chase" (paper)
Legacy Pricing Infrastructure
Legacy architecture: A series of cron jobs

- Ingest high volume of client app events (Kinesis, KCL)
- Compute features (e.g. demand, conversation rate, supply) from events
- Run ML models on features to compute primetime for all regions (per min, per gh6)

SFO, calendar_min_1: {gh6: 1.0, gh6: 2.0, ...}
NYC: calendar_min_1: {gh6, 2.0, gh6: 1.0, ...}
Problems

1. Latency

2. Code complexity (LOC)

3. Hard to add new features involving windowing/join (i.e. arbitrary demand windows, subregional computation)

4. No dynamic / smart triggers
Can we use Flink?
Streaming Stack

Source -> Streaming Application (SQL, Java) -> Sink

- Source: Phone
- Sink: Amazon S3
- Streaming Application: Flink
- Deployment Tooling: Amazon Kinesis, Apache Kafka, Docker
- Metrics & Dashboards: Wavefront
- Alerts: Salt (Config / Orca)
- Logging: Salt (Config / Orca)

- Stream / Schema Registry: Amazon S3
- Deployment Tooling: Amazon EC2
- Metrics & Dashboards: Wavefront
- Alerts: Salt (Config / Orca)
- Logging: Docker
Streaming and Python

- Flink and many other big data ecosystem projects are Java / JVM based
 - Team wants to adopt streaming, but doesn’t have the Java skills
 - Jython != Python
- Use cases for different language environments
 - Python primary option for Machine Learning
- Cost of many API styles and runtime environments
Solution with Beam

Source

Streaming Application (Python/Beam)

Sink

Amazon Kinesis

Amazon S3

Elasticsearch

kafka

Pandas

SciPy

Numpy

Scikit

DeZyre

Data Science

Apache

Apache

Apache

Apache

Apache

Apache

Apache

Apache

Apache
Streaming based Pricing Infrastructure
Pipeline (conceptual outline)

Lyft apps (phones)

- kinesis events (source)
 - rideRequested, appOpen, ...
- filter events
 - valid sessions, dedupe, ...
- aggregate and window
 - unique_users_per_min, unique_requests_per_5_min, ...
- run models to generate features (culminating in PT)
 - conversion learner, eta learner, ...

internal services

redis
Details of implementation

1. Filtering (with internal service calls)
2. Aggregation with Beam windowing: 1min, 5min (by event time)
3. Triggers: watermark or stateful processing
4. Machine learning models invoked using stateful Beam transforms
5. Final gh6:pt output from pipeline stored to Redis
Gains

- 60% reduction in latency
- Reuse of model code
- 10K => 4K LOC
- 300 => 120 AWS instances
Beam and multiple languages
The Beam Vision

1. **End users:** who want to write pipelines in a language that’s familiar.

2. **SDK writers:** who want to make Beam concepts available in new languages. Includes **IOs:** connectors to data stores.

3. **Runner writers:** who have a distributed processing environment and want to support Beam pipelines

https://s.apache.org/apache-beam-project-overview
Multi-Language Support

- Initially Java SDK and Java Runners
- 2016: Start of cross-language support effort
- 2017: Python SDK on Dataflow
- 2018: Go SDK (for portable runners)
- 2018: Python on Flink MVP
- Next: Cross-language pipelines, more portable runners
Python Example

```python
p = beam.Pipeline(runner=runner, options=pipeline_options)
(p
 | ReadFromText("/path/to/text*") | Map(lambda line: ...)
 | WindowInto(FixedWindows(120)
    trigger=AfterWatermark(
        early=AfterProcessingTime(60),
        late=AfterCount(1))
    accumulation_mode=ACCUMULATING)
 | CombinePerKey(sum))
 | WriteToText("/path/to/outputs")
)
result = p.run()
```

(What, Where, When, How)
Portability (originally)

Java

```java
input.apply(
    Sum.integersPerKey())
```

SQL (via Java)

```sql
SELECT key, SUM(value)
FROM input GROUP BY key
```

Python

```python
input | Sum.PerKey()
```
Portability (current)

Java
input.apply(
 Sum.integersPerKey())

SQL (via Java)
SELECT key, SUM(value)
FROM input GROUP BY key

Python
input | Sum.PerKey()

Go
stats.Sum(s, input)

Apache Apex
Apache Spark
Gearpump
IBM Streams
Apache Nemo (incubating)
Apache Samza
Apache Flink
Cloud Dataflow

https://s.apache.org/state-of-beam-sfo-2018
Beam Flink Runner
Portability Framework w/ Flink Runner

Python SDK (optional)

Pipeline (protobuf)

Runner

Job Service

Artifact Staging

Flink Job

Cluster

SDK Worker (Python)

gRPC

Task Manager

Fn Services (Beam Flink Task)

Executor / Fn API

Staging Location (DFS, S3, ...)

python -m apache_beam.examples.wordcount \
--input=/etc/profile \
--output=/tmp/py-wordcount-direct \
--runner=PortableRunner \
--job_endpoint=localhost:8099 \n--streaming

Provision

Control

Data

Artifact Retrieval

State

Logging
Portable Runner

- Provide Job Service endpoint (Job Management API)
- Translate portable pipeline representation to native (Flink) API
- Provide gRPC endpoints for control/data/logging/state plane
- Manage SDK worker processes that execute user code
- Manage bundle execution (with arbitrary user code) via Fn API
- Manage state for side inputs, user state and timers

Common implementation for JVM based runners (/runners/java-fn-execution) and portable “Validate Runner” integration test suite in Python!
Fn API - Bundle Processing

Bundle size matters!

- Amortize overhead over many elements
- Watermark hold effect on latency

https://s.apache.org/beam-fn-api-processing-a-bundle
Lyft Flink Runner Customizations

- Translator extension for streaming sources
 - Kinesis, Kafka consumers that we also use in Java Flink jobs
 - Message decoding, watermarks
- Python execution environment for SDK workers
 - Tailored to internal deployment tooling
 - Docker-free, frozen virtual envs
- https://github.com/lyft/beam/tree/release-2.11.0-lyft
How slow is this?

(messages
| 'reshuffle' >> beam.Reshuffle()
| 'decode' >> beam.Map(lambda x: (__import__('random').randint(0, 511), 1))
| 'noop1' >> beam.Map(lambda x: x)
| 'noop2' >> beam.Map(lambda x: x)
| 'noop3' >> beam.Map(lambda x: x)
| 'window' >> beam.WindowInto(window.GlobalWindows(),
 trigger=Repeatedly(AfterProcessingTime(5 * 1000)),
 accumulation_mode= AccumulationMode.DISCARDING)
| 'group' >> beam.GroupByKey()
| 'count' >> beam.Map(count)
)

- Fn API **Overhead 15%**?
- Fused stages
- Bundle size
- Parallel SDK workers
- TODO: Cython, protobuf
- C++ bindings
Fast enough for real Python work!

- c5.4xlarge machines (16 vCPU, 32 GB)
- 16 SDK workers / machine
- 1000 ms or 1000 records / bundle
- 280,000 transforms / second / machine (~17,500 per worker)
- Python user code will be gating factor
Beam Portability Recap

• Pipelines written in non-JVM languages on JVM runners
 ○ Python, Go on Flink (and others)
• Full isolation of user code
 ○ Native CPython execution w/o library restrictions
• Configurable SDK worker execution
 ○ Docker, Process, Embedded, ...
• Multiple languages in a single pipeline (future)
 ○ Use Java Beam IO with Python
 ○ Use TFX with Java
 ○ <your use case here>
Feature Support Matrix (Beam 2.11.0)

Table: Feature Support

<table>
<thead>
<tr>
<th>Feature</th>
<th>Flink (master)</th>
<th>Dataflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>Python</td>
<td>Go</td>
</tr>
</tbody>
</table>

Impulse
- **Batch**: Green
- **Streaming**: Yellow

ParDo
- **w/ side input**: Green
- **w/ multiple output**: Yellow
- **w/ user state**: Green
- **w/ user timers**: Yellow
- **w/ user metrics**: Green

Flatten
- **w/ explicit flatten**: Green

Combine
- **w/ first-class rep**: Green
- **w/ lifting**: Yellow

SDF
- **w/ liquid sharding**: Green

GBK

CoGBK

WindowInfo
- **w/ sessions**: Green
- **w/ custom windowfn**: Yellow

Example
- **WordCap**: Green
- **WordCount**: Green
- **w/ write to Sink**: Green
- **w/ write to GCS**: Yellow

[Source](https://s.apache.org/apache-beam-portability-support-table)
Lessons Learned
Lessons Learned

- Python Beam SDK and portable Flink runner evolving
- Keep pipeline simple - Flink tasks / shuffles are not free
- Stateful processing is essential for complex logic
- Model execution latency matters
- Instrument everything for monitoring
- Approach for pipeline upgrade and restart
- Mind your dependencies - rate limit API calls
- Testing story (integration, staging)
We’re Hiring! Apply at www.lyft.com/careers or email data-recruiting@lyft.com

Data Engineering
- **Engineering Manager**
 San Francisco
- **Software Engineer**
 San Francisco, Seattle, & New York City

Data Infrastructure
- **Engineering Manager**
 San Francisco
- **Software Engineer**
 San Francisco & Seattle

Experimentation
- **Software Engineer**
 San Francisco

Observability
- **Software Engineer**
 San Francisco

Streaming
- **Software Engineer**
 San Francisco
Please ask questions!

This presentation: