Building Deep Learning Applications for Big Data

An Introduction to Analytics Zoo: Distributed TensorFlow, Keras and BigDL on Apache Spark

Jennie Wang, Software Architect, Intel
Guoqiong Song, Deep Learning R&D Engineer, Intel
Agenda

• Motivation (10 minutes)
 • Trends, real-world scenarios

• DL frameworks on Apache Spark (20 minutes)
 • BigDL, TensorFlowOnSpark, DL Pipelines, Project Hydrogen, SparkNet

• Analytics Zoo (30 minutes)
 • Distributed TensorFlow, Keras and BigDL on Apache Spark

• Analytics Zoo Examples (30 minutes)
 • Dogs vs. cats, object detection, distributed TensorFlow

• Break (30 minutes)
Agenda

• Distributed training in BigDL (30 minutes)
 • Data parallel training, parameter synchronization, scaling & convergence, etc.

• Advanced applications (20 minutes)
 • Text classification, movie recommendation

• Real-world applications (30 minutes)
 • Object detection and image feature extraction at JD.com
 • Produce defect detection using distributed TF on Spark in Midea
 • Image similarity based house recommendation for MLSlisting
 • Transfer learning based image classifications for World Bank
 • LSTM-Based time series anomaly detection for Baosight
 • Fraud detection for payment transactions for UnionPay

• Conclusion and Q&A (10 minutes)
Motivations

Technology and Industry Trends

Real World Scenarios
Trend #1: Data Scale Driving Deep Learning Process

“Machine Learning Yearning”, Andrew Ng, 2016
Trend #2: Hadoop Becoming the Center of Data Gravity

Why an Enterprise Data Hub?
- Single place for all enterprise data... (unedited hi-resolution history of everything)
- Reduces Application Integration Costs
 - Connect once to Hub (N vs N^2 connections)
- Lowest unit cost data processing & storage platform
 - Open source S/W on commodity H/W (reliability in S/W not H/W)
 - Can mix H/W vendors means every expansion is competitively tendered
- Fast Standardised Provision
 - No custom design task, re-use Active Directory account/password processes
 - Reduces Shadow IT
- Secure (audited, E2E visibility/auditing, encryption)
 - Eliminate need for one off extracts

Everyone is building Data Lakes
- Universal data acquisition makes all big data analytics and reporting easier
- Hadoop provides a scalable storage with HDFS
- How will we scale consumption and curation of all this data?

Phillip Radley, BT Group
Strata + Hadoop World 2016 San Jose

Matthew Glickman, Goldman Sachs
Spark Summit East 2015
Trend #3: Real-World ML/DL Systems Are Complex Big Data Analytics Pipelines

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Trend #4: Unified Big Data Platform Driving Analytics & Data Science

An Analogy

First cellular phones → Specialized devices → Unified device (smartphone)

Ion Stoica, UC Berkeley, Spark Summit 2013 Keynote
Unified Big Data Analytics Platform

Apache Hadoop & Spark Platform

- Machine Learning
- Graph Analytics
- Batch
- Streaming
- Interactive

Data Processing & Analysis
- DataFrame
- SQL
- SparkR
- Streaming
- ML Pipelines
- MLlib
- GraphX
- Spark Core

Resource Mgmt & Co-ordination
- YARN
- ZooKeeper

Data Input
- Flume
- Kafka

Storage
- HDFS
- Parquet
- Avro
- HBase

Tools
- R
- Java
- Python
- Flink
- Storm
- MR
- Giraph

Languages
- R
- Java
- Python
- Notebooks
- Spreadsheets
Chasm b/w Deep Learning and Big Data Communities

Deep learning experts

The Chasm

Average users (big data users, data scientists, analysts, etc.)
Large-Scale Image Recognition at JD.com
Bridging the Chasm

Make deep learning more accessible to big data and data science communities

• Continue the use of familiar SW tools and HW infrastructure to build deep learning applications

• Analyze “big data” using deep learning on the same Hadoop/Spark cluster where the data are stored

• Add deep learning functionalities to large-scale big data programs and/or workflow

• Leverage existing Hadoop/Spark clusters to run deep learning applications
 • Shared, monitored and managed with other workloads (e.g., ETL, data warehouse, feature engineering, traditional ML, graph analytics, etc.) in a dynamic and elastic fashion
DL Frameworks on Apache Spark

BigDL, DL Pipelines for Spark, TensorflowOnSpark, Project Hydrogen of Spark, SparkNet, etc.
A Spark cluster consists of a single *driver* node and multiple *worker* nodes.

A Spark *job* contains many Spark *tasks*, each working on a data *partition*.

Driver is responsible for scheduling and dispatching the tasks to workers, which runs the actual Spark tasks.
Apache Spark
Spark Program

• Spark runs as a library in your program (1 instance per app)

• Runs tasks locally or on cluster
 • K8s, YARN, Mesos or standalone mode

• Accesses storage systems via Hadoop InputFormat API
 • Can use HBase, HDFS, S3, ...

Source: “Parallel programming with Spark”, Matei Zaharia, AMPCamp 3
Apache Spark
Distributed Task Execution

- General task graphs
- Automatically pipelines functions
- Data locality aware
- Partitioning aware to avoid shuffles

Source: “Parallel programming with Spark”, Matei Zaharia, AMPCamp 3
BigDL
Bringing Deep Learning To Big Data Platform

- Distributed deep learning framework for Apache Spark*
- Make deep learning more accessible to big data users and data scientists
 - Write deep learning applications as standard Spark programs
 - Run on existing Spark/Hadoop clusters (no changes needed)
- Feature parity with popular deep learning frameworks
 - E.g., Caffe, Torch, Tensorflow, etc.
- High performance (on CPU)
 - Powered by Intel MKL and multi-threaded programming
- Efficient scale-out
 - Leveraging Spark for distributed training & inference

https://github.com/intel-analytics/BigDL
https://bigdl-project.github.io/
BigDL Run as Standard Spark Programs

Standard Spark jobs
• No changes to the Spark or Hadoop clusters needed

Iterative
• Each iteration of the training runs as a Spark job

Data parallel
• Each Spark task runs the same model on a subset of the data (batch)
Distributed Training in BigDL

Parameter Server Architecture
directly inside Spark (using Block Manager)

Peer-2-Peer All-Reduce synchronization
Load existing TF or Keras models in Spark ML pipelines

- Load into transformer: inference only
- Load into estimator: single node training/tuning only

https://github.com/databricks/spark-deep-learning
TensoflowOnSpark

Standalone TF jobs on Spark cluster

- Use Spark as the orchestration layer to allocate resources
- Launch distributed TensorFlow job on the allocated resources
- Coarse-grained integration of two independent frameworks
 - Memory overheads, no gang scheduling, limited interactions with data pipelines, etc.

`feed_dict`: TF worker func runs as independent process in background, reading data from Python queue

`queue_runner`: direct HDFS access from TF work func

https://github.com/yahoo/TensorFlowOnSpark
Spark and distributed TF have different execution model

- Support “gang scheduling” through new barrier execution mode

Overhead of data transferring between Spark and TF

- Optimized data exchange leveraging Apache Arrow

SparkNet

Distributed DL training by running Caffe in each worker
• Asynchronous parameter synchronization through master (driver) mode
 • Very inefficient (~20 seconds with just 5 workers)

Analytics Zoo

A unified analytics + AI platform for distributed TensorFlow, Keras and BigDL on Apache Spark

https://github.com/intel-analytics/analytics-zoo
Analytics Zoo

Unified Analytics + AI Platform for Big Data

Distributed TensorFlow, Keras and BigDL on Spark

<table>
<thead>
<tr>
<th>Reference Use Cases</th>
<th>• Anomaly detection, sentiment analysis, fraud detection, image generation, chatbot, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-In Deep Learning Models</td>
<td>• Image classification, object detection, text classification, text matching, recommendations, sequence-to-sequence, anomaly detection, etc.</td>
</tr>
<tr>
<td>Feature Engineering</td>
<td>Feature transformations for • Image, text, 3D imaging, time series, speech, etc.</td>
</tr>
<tr>
<td>High-Level Pipeline APIs</td>
<td>• Distributed TensorFlow and Keras on Spark • Native support for transfer learning, Spark DataFrame and ML Pipelines • Model serving API for model serving/inference pipelines</td>
</tr>
<tr>
<td>Backbends</td>
<td>Spark, TensorFlow, Keras, BigDL, OpenVINO, MKL-DNN, etc.</td>
</tr>
</tbody>
</table>

https://github.com/intel-analytics/analytics-zoo/
https://analytics-zoo.github.io/
Analytics Zoo

Build end-to-end deep learning applications for big data
- Distributed TensorFlow on Spark
- Keras-style APIs (with autograd & transfer learning support)
- nnframes: native DL support for Spark DataFrames and ML Pipelines
- Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
- Model serving APIs (w/ OpenVINO support)
- Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
- Built-in deep learning models and reference use cases
Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed *TensorFlow* on Spark
• *Keras*-style APIs (with autograd & transfer learning support)
• *nnframes*: native DL support for Spark DataFrames and ML Pipelines
• Built-in *feature engineering* operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO *model serving* APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning *models* and reference *use cases*
from zoo import init_nncontext
from zoo.pipeline.api.net import TFDataset

sc = init_nncontext()

Each record in the train_rdd consists of a list of NumPy ndarrays
train_rdd = sc.parallelize(file_list)
 .map(lambda x: read_image_and_label(x))
 .map(lambda image_label: decode_to_ndarrays(image_label))

TFDataset represents a distributed set of elements,
in which each element contains one or more TensorFlow Tensor objects.
dataset = TFDataset.from_rdd(train_rdd,
 names=['features', 'labels'],
 shapes=[[28, 28, 1], [1]],
 types=[tf.float32, tf.int32],
 batch_size=BATCH_SIZE)
import tensorflow as tf

slim = tf.contrib.slim

images, labels = dataset.tensors
labels = tf.squeeze(labels)
with slim.arg_scope(lenet.lenet_arg_scope()):
 logits, end_points = lenet.lenet(images, num_classes=10, is_training=True)

loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels))
3. Distributed training on Spark and BigDL

```python
from zoo.pipeline.api.net import TFOptimizer
from bigdl.optim.optimizer import MaxIteration, Adam, MaxEpoch, TrainSummary

optimizer = TFOptimizer.from_loss(loss, Adam(1e-3))
optimizer.set_train_summary(TrainSummary("/tmp/az_lenet", "lenet"))
optimizer.optimize(end_trigger=MaxEpoch(5))
```
Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases
Keras, Autograd & Transfer Learning APIs

1. Use transfer learning APIs to
 • Load an existing Caffe model
 • Remove last few layers
 • Freeze first few layers
 • Append a few layers

from zoo.pipeline.api.net import *
full_model = Net.load_caffe(def_path, model_path)
Remove layers after pool5
model = full_model.new_graph(outputs=\"pool5\")
freeze layers from input to res4f inclusive
model.freeze_up_to(\"res4f\")
append a few layers
image = Input(name=\"input\", shape=(3, 224, 224))
resnet = model.to_keras()(image)
resnet50 = Flatten()(resnet)
2. Use *Keras-style and autograd* APIs to build the Siamese Network

```python
import zoo.pipeline.api.autograd as A
from zoo.pipeline.api.keras.layers import *
from zoo.pipeline.api.keras.models import *

input = Input(shape=[2, 3, 226, 226])
features = TimeDistributed(layer=resnet50)(input)
f1 = features.index_select(1, 0) #image1
f2 = features.index_select(1, 1) #image2
diff = A.abs(f1 - f2)
fc = Dense(1)(diff)
output = Activation("sigmoid")(fc)
model = Model(input, output)
```
Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases
1. Initialize **NNContext** and load images into **DataFrames** using **NNImageReader**

```python
from zoo.common.nncontext import *
from zoo.pipeline.nnframes import *
sc = init_nncontext()
imageDF = NNImageReader.readImages(image_path, sc)
```

2. Process loaded data using **DataFrame** transformations

```python
getName = udf(lambda row: ...)
df = imageDF.withColumn("name", getName(col("image")))
```

3. Processing image using built-in **feature engineering** operations

```python
from zoo.feature.image import *
transformer = ChainedPreprocessing([RowToImageFeature(), ImageChannelNormalize(123.0, 117.0, 104.0), ImageMatToTensor(), ImageFeatureToTensor()])
```
4. Define model using **Keras-style API**

   ```python
   from zoo.pipeline.api.keras.layers import *
   from zoo.pipeline.api.keras.models import *
   model = Sequential()
   .add(Convolution2D(32, 3, 3, activation='relu', input_shape=(1, 28, 28))) \
   .add(MaxPooling2D(pool_size=(2, 2))) \
   .add(Flatten()).add(Dense(10, activation='softmax'))
   ```

5. Train model using **Spark ML Pipelines**

   ```python
   Estimator = NNEstimator(model, CrossEntropyCriterion(), transformer) \ 
   .setLearningRate(0.003).setBatchSize(40).setMaxEpoch(1) \ 
   .setFeaturesCol("image").setCachingSample(False)
   nnModel = estimator.fit(df)
   ```
Analytics Zoo

Build end-to-end deep learning applications for big data
- Distributed *TensorFlow* on Spark
- *Keras*-style APIs (with autograd & transfer learning support)
- *nnframes*: native DL support for Spark DataFrames and ML Pipelines
- Built-in *feature engineering* operations for data preprocessing

Productionize deep learning applications for big data at scale
- POJO model serving APIs (w/ OpenVINO support)
- Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
- Built-in deep learning *models* and reference *use cases*
Working with Image

1. **Read images into local or distributed ImageSet**

   ```python
   from zoo.common.nncontext import *
   from zoo.feature.image import *
   spark = init_nncontext()
   local_image_set = ImageSet.read(image_path)
   distributed_image_set = ImageSet.read(image_path, spark, 2)
   ```

2. **Image augmentations using built-in ImageProcessing operations**

   ```python
   transformer = ChainedPreprocessing([ImageBytesToMat(),
                                       ImageColorJitter(),
                                       ImageExpand(max_expand_ratio=2.0),
                                       ImageResize(300, 300, -1),
                                       ImageHFlip()])
   new_local_image_set = transformer(local_image_set)
   new_distributed_image_set = transformer(distributed_image_set)
   ```

Image Augmentations Using Built-in Image Transformations (w/ OpenCV on Spark)
Working with Text

1. **Read text into local or distributed TextSet**

   ```python
   from zoo.common.nncontext import *
   from zoo.feature.text import *
   spark = init_nncontext()
   local_text_set = TextSet.read(text_path)
   distributed_text_set = TextSet.read(text_path, spark, 2)
   ```

2. **Build text transformation pipeline using built-in operations**

   ```python
   transformedTextSet = textSet.tokenize() \n       .normalize() \n       .word2idx() \n       .shapeSequence(len) \n       .generateSample() \n   ```
Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras-style APIs (with autograd & transfer learning support)
• nnframes: native DL support for Spark DataFrames and ML Pipelines
• Built-in feature engineering operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models and reference use cases
import com.intel.analytics.zoo.pipeline.inference.AbstractInferenceModel;

public class TextClassification extends AbstractInferenceModel {
    public RankerInferenceModel(int concurrentNum) {
        super(concurrentNum);
    }
    ...
}

public class ServingExample {
    public static void main(String[] args) throws IOException {
        TextClassification model = new TextClassification();
        model.load(modelPath, weightPath);

        texts = ...
        List<JTensor> inputs = preprocess(texts);
        for (JTensor input : inputs) {
            List<Float> result = model.predict(input.getData(), input.getShape());
            ...
        }
    }
}
Transparently support **OpenVINO** in model serving, which deliver a significant boost for inference speed
Seamless integration in Web Services, Storm, Flink, Kafka, etc. (using POJO local Java APIs)
Analytics Zoo

Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• *Keras*-style APIs (with autograd & transfer learning support)
• *nnframes*: native DL support for Spark DataFrames and ML Pipelines
• Built-in *feature engineering* operations for data preprocessing

Productionize deep learning applications for big data at scale
• POJO *model serving* APIs (w/ OpenVINO support)
• Support Web Services, Spark, Storm, Flink, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning *models* and reference *use cases*
Built-in Deep Learning Models

- **Object detection**
  - E.g., SSD, Faster-RCNN, etc.

- **Image classification**
  - E.g., VGG, Inception, ResNet, MobileNet, etc.

- **Text classification**
  - Text classifier (using CNN, LSTM, etc.)

- **Recommendation**
  - E.g., Neural Collaborative Filtering, Wide and Deep Learning, etc.

- **Anomaly detection**
  - Unsupervised time series anomaly detection using LSTM

- **Sequence-to-sequence**
1. **Load pretrained model in *Detection Model Zoo***

   ```python
 from zoo.common.nncontext import *
 from zoo.models.image.objectdetection import *
 spark = init_nncontext()
 model = ObjectDetector.load_model(model_path)
   ```

2. **Off-the-shell inference using the loaded model**

   ```python
 image_set = ImageSet.read(img_path, spark)
 output = model.predict_image_set(image_set)
   ```

3. **Visualize the results using utility methods**

   ```python
 config = model.get_config()
 visualizer = Visualizer(config.label_map(), encoding="jpg")
 visualized = visualizer(output).get_image(to_chw=False).collect()
   ```

---

**Off-the-shell Inference Using Analytics Zoo Object Detection API**

Sequence-to-Sequence API

encoder = RNNEncoder.initialize(rnn_type, nlayers, hidden_size, embedding)
decoder = RNNDecoder.initialize(rnn_type, nlayers, hidden_size, embedding)
seq2seq = Seq2seq(encoder, decoder)
Reference Use Cases

• **Anomaly Detection**
  • Using LSTM network to detect anomalies in time series data

• **Fraud Detection**
  • Using feed-forward neural network to detect frauds in credit card transaction data

• **Recommendation**
  • Use Analytics Zoo Recommendation API (i.e., Neural Collaborative Filtering, Wide and Deep Learning) for recommendations on data with explicit feedback.

• **Sentiment Analysis**
  • Sentiment analysis using neural network models (e.g. CNN, LSTM, GRU, Bi-LSTM)

• **Variational Autoencoder (VAE)**
  • Use VAE to generate faces and digital numbers

• **Web services**
  • Use Analytics Zoo model serving APIs for model inference in web servers

https://github.com/intel-analytics/analytics-zoo/tree/master/apps
Analytics Zoo Examples

Dogs vs. cats, object detections, Distributed TF
Dogs vs. Cats

Notebook:
Object Detection API

Notebook:
Image Classification & Fine-Tuning Using TFNet

Notebook:
Distributed TensorFlow Training on Spark

https://github.com/intel-analytics/analytics-zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_lenet.py

https://github.com/intel-analytics/analytics-zoo/blob/master/pyzoo/zoo/examples/tensorflow/distributed_training/train_mnist_keras.py
Break
Agenda

• Distributed training in BigDL (30 minutes)
  • Data parallel training, parameter synchronization, scaling & convergence, etc.

• Advanced applications (20 minutes)
  • Text classification, movie recommendation

• Real-world applications (30 minutes)
  • Object detection and image feature extraction at JD.com
  • Produce defect detection using distributed TF on Spark in Midea
  • Image similarity based house recommendation for MLSlisting
  • Transfer learning based image classifications for World Bank
  • LSTM-Based time series anomaly detection for Baosight
  • Fraud detection for payment transactions for UnionPay

• Conclusion and Q&A (10 minutes)
Distributed Training In BigDL

Data parallel training
Parameter synchronization
Scaling and Convergence
Task scheduling

"BigDL: A Distributed Deep Learning Framework for Big Data"
Apache Spark

Single master (driver), multiple workers
Spark compute model
- Data parallel
- Functional, coarse-grained operators
  - Immutable RDDs
  - Applying the same operation (e.g., map, filter, etc.) to all data items

Source: “Parallel programming with Spark”, Matei Zaharia, AMPCamp 3
Distributed Training in BigDL
Data Parallel, Synchronous Mini-Batch SGD

Prepare training data as an RDD of Samples
Construct an RDD of models (each being a replica of the original model)

for (i ← 1 to N) {
  //"model forward-backward" job
  for each task in the Spark job:
    read the latest weights
    get a random batch of data from local Sample partition
    compute errors (forward on local model replica)
    compute gradients (backward on local model replica)

  //"parameter synchronization" job
  aggregate (sum) all the gradients
  update the weights per specified optimization method
}
Data Parallel Training

Task 1: Worker 1 and Worker 2 communicate with each other to perform the following:
- Partition 1 of Sample RDD
- Partition 2 of Sample RDD
- Partition 1 of Model RDD
- Partition 2 of Model RDD

Task 2: Worker n communicates with Worker 2 to perform the following:
- Partition n of Sample RDD
- Partition 2 of Sample RDD
- Partition n of Model RDD
- Partition 2 of Model RDD

Task n: zip Sample and model RDDs, and compute gradient on co-located Sample and model partitions

“Model Forward-Backward” Job
Parameter Synchronization

Task 1

local gradient

gradient 1

update

weight 1

Task 1

Task 2

local gradient

gradient 2

update

weight 2

Task n

local gradient

gradient n

update

weight n

“Parameter Synchronization” Job
For each task $n$ in the "parameter synchronization" job {
  \textbf{shuffle} the $n^{th}$ partition of all gradients to this task
  aggregate (sum) the gradients
  updates the $n^{th}$ partition of the weights
  \textbf{broadcast} the $n^{th}$ partition of the updated weights
}

"Parameter Synchronization" Job
(managing $n^{th}$ partition of the parameters - similar to a parameter server)

"Parameter Server" style architecture (directly on top of primitives in Spark)
- Gradient aggregation: \textit{shuffle}
- Weight sync: \textit{task-side broadcast}
- \textit{In-memory} persistence
Distributed Training in BigDL
Data Parallel, Synchronous Mini-Batch SGD

Prepare training data as an RDD of *Samples*
Construct an RDD of *models* (each being a replica of the original model)

for (i <- 1 to N) {
    //"model forward-backward" job
    for each task in the Spark job:
        read the latest *weights*
        get a random *batch* of data from local *Sample* partition
        compute errors (forward on local model replica)
        compute *gradients* (backward on local model replica)

    //"parameter synchronization" job
    aggregate (sum) all the *gradients*
    update the *weights* per specified optimization method
}
Training Scalability

Throughput of ImageNet Inception v1 training (w/ BigDL 0.3.0 and dual-socket Intel Broadwell 2.1 GHz); the throughput scales almost linear up to 128 nodes (and continue to scale reasonably up to 256 nodes).

Increased Mini-Batch Size

- Distributed synchronous mini-batch SGD
  - Increased mini-batch size
    \[ \text{total\_batch\_size} = \text{batch\_size\_per\_worker} \times \text{num\_of\_workers} \]
  - Can lead to loss in test accuracy

- State-of-art method for scaling mini-batch size*
  - Linear scaling rule
  - Warm-up strategy
  - Layer-wise adaptive rate scaling
  - Adding batch normalization

Training Convergence: Inception v1

**Strategies**
- Warm-up
- Linear scaling
- Gradient clipping
- TODO: adding batch normalization

Source: Very large-scale distributed deep learning with BigDL, Jason Dai and Ding Ding. O'Reilly AI Conference 2017
Training Convergence: SSD

**Strategies**
- Warm-up
- Linear scaling
- Gradient clipping

Source: Very large-scale distributed deep learning with BigDL, Jason Dai and Ding Ding. O'Reilly AI Conference 2017
Advanced Analytics Zoo Applications

Text classification, movie recommendations
Text Classification

Movie Recommendations

Notebook:
Real-World Applications

Object detection and image feature extraction at JD.com
Produce defect detection using distributed TF on Spark in Midea
Image similarity based house recommendation for MLSlisting
Transfer learning based image classifications for World Bank
LSTM-Based time series anomaly detection for Baosight
Fraud detection for payment transactions for UnionPay
Object Detection and Image Feature Extraction at JD.com
Applications

Large-scale image feature extraction
• Object detect (remove background, optional)
• Feature extraction

Application
• Similar image search
• Image Deduplication
  • Competitive price monitoring
  • IP (image copyright) protection system

Source: “Bringing deep learning into big data analytics using BigDL”, Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017
Similar Image Search

Source: “Bringing deep learning into big data analytics using BigDL”, Xianyan Jia and Zhenhua Wang, Strata Data Conference Singapore 2017
Challenges of Productionizing Large-Scale Deep Learning Solutions

Productionizing large-scale deep learning solutions is challenging
• Very complex and error-prone in managing large-scale distributed systems
  • E.g., resource management and allocation, data partitioning, task balance, fault tolerance, model deployment, etc.

• Low end-to-end performance in GPU solutions
  • E.g., reading images out from HBase takes about half of the total time

• Very inefficient to develop the end-to-end processing pipeline
  • E.g., image pre-processing on HBase can be very complex
Production Deployment with Analytics Zoo for Spark and BigDL

- Reuse existing Hadoop/Spark clusters for deep learning with no changes (image search, IP protection, etc.)
- Efficiently scale out on Spark with superior performance \((3.83x\) speed-up vs. GPU servers) as benchmarked by JD

http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
Produce Defect Detection using Distributed TF on Spark in Midea

Produce Defect Detection using Distributed TF on Spark in Midea
Image Similarity Based House Recommendation for MLSlistings

MLSlistings built image-similarity based house recommendations using BigDL on Microsoft Azure

Image Similarity Based House Recommendation for MLSlistings

- RDD of house photos
- Image pre-processing
- Three pre-trained Inception v1 models (fine-tuned as classifiers)
- Pre-trained VGG16 model (to extract features)
- Image features
- Tags (is_exterior, style, floors) of images
- Store image tags and feature in table storage

Tags (is_exterior, style, floors) of images

Pre-trained VGG16 model (to extract features)
Image Similarity Based House Recommendation for MLSlistings

Notebook:
https://github.com/intel-analytics/analytics-zoo/blob/master/apps/image-similarity/image-similarity.ipynb
Transfer Learning Based Image Classifications for World Bank

Classifying Real Food Images is not a Cat vs. Dog Problem

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang, Spark Summit 2018
Project Layout

Phase 1:
- Image preprocessing (eliminate poor quality images and invalid images)
- Classify images (by food type) to validate existing labels

Phase 2:
- Identify texts in the image and make bounding box around them
- Text recognition (words/sentences in the image text)
- Determine whether text contains PII (personal identifiable information)
- Blur areas with PII text

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang, Spark Summit 2018
Code – Phase 1

Fine-tuning Training

```java
get model
pretrained_model_path = path.join(MODEL_ROOT, "bigdl_inception_v1Imagenet.0_4_6.model")

create a new model by remove layers after pool5/drop_7x7_s1
model = full_model.new_graph(["pool5/drop_7x7_s1"])

new input node
inputNode = Input(name="input", shape=(3, 224, 224))

get logits
logits = model.outputLayer(inputNode)

new model
newModel = NewModel(inputNode, logits)

create KerasInput
createKerasInput = createZooKerasInput
createKerasInput
createKerasInput
createKerasInput

Command took 4.74 seconds -- by Jiao.Wang@intel.com at 6/2/2018, 8:03:46 PM on 20-node-cluster
```

Prediction and Evaluation

```java
predict
predict_model = trained_model.setBatchSize(batch_size)
predictionDF = predict_model.transform(test_image)
predictionDF.cache()

Measure Test Accuracy w/Test Set

evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")

accuracy = evaluator.evaluate(predictionDF)

print("Accuracy = %.1f % accuracy")
predictionDF.unpersist()
```

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang, Spark Summit 2018
Result – Phase 1

- Fine tune with Inception v1 on a full dataset
- Dataset: 994325 images, 69 categories

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Cores</th>
<th>Batch Size</th>
<th>Epochs</th>
<th>Training Time</th>
<th>Throughput (images/sec)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>30</td>
<td>1200</td>
<td>12</td>
<td>17hr</td>
<td>170</td>
<td>81.7</td>
</tr>
</tbody>
</table>

* This model training was performed using multinode cluster on AWS R4.8xlarge instance with 20 nodes

Source: Using Crowdsourced Images to Create Image Recognition Models with Analytics Zoo using BigDL, Maurice Nsabimana and Jiao Wang, Spark Summit 2018
LSTM-Based Time Series Anomaly Detection for Baosight

LSTM-Based Time Series Anomaly Detection for Baosight

Notebook:

Fraud Detection for Payment Transactions for UnionPay

Training Data

- normal
- fraud

 sampled partition

Pre-Processing

Feature Engineering

all features

Spark Pipeline

Feature Selection*

selected features

Train one model

Model Training

model candidate

Model Evaluation & Fine Tune

model

sampled partition

sampled partition

sampled partition

Hive Table

Spark DataFrame

Neural Network Model Using BigDL

Pre-processing

Feature Engineering

Feature Selection

Model Ensemble

Predictions

Test Data

Test

http://mp.weixin.qq.com/s?__biz=MzI3NDAwNDUwNg==&mid=2648307335&idx=1&sn=8eb9f63eaf2e40e24a90601b9cc03d1f
Fraud Detection for Payment Transactions for **UnionPay**

**Notebook:**

Upcoming sessions

User-based real-time product recommendations leveraging deep learning using Analytics Zoo on Apache Spark and BigDL at Strata Data Conference in San Francisco (March 27, 4:20–5:00pm)

Analytics Zoo: Distributed TensorFlow in production on Apache Spark at Strata Data Conference in San Francisco (March 28, 3:50–4:30pm)
Unified Analytics + AI Platform
Distributed TensorFlow, Keras and BigDL on Apache Spark
https://github.com/intel-analytics/analytics-zoo
• Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Xeon phi, Lake Crest, etc. are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation
Backup slides
Difference vs. Classical PS Architecture

**Classical PS architecture**
- Multiple long-running, potentially stateful tasks
- Interact with each other (in a blocking fashion for synchronization)
- Require fine-grained data access and in-place data mutation
- Not directly supported by existing big data systems

**BigDL implementations**
- Run a series of short-lived Spark jobs (e.g., two jobs per mini-batch)
- Each task in the job is stateless and non-blocking
- Automatically adapt to the dynamic resource changes (e.g., *preemption*, *failures*, *resource sharing*, etc.)
- Built on top of existing primitives in Spark (e.g., *shuffle*, *broadcast*, and *in-memory data persistence*)