Deep Learning for Large-Scale Fraud Detection

Ting-Fang Yen, Director of Research, DataVisor
Sept 7, 2018
Online Fraud

Amazon continues crackdown on alleged fake reviews

Airbnb’s Next Big Challenge Is Getting the Scammers Away

StubHub Ticket Reseller Says It's Victim of Massive Cyber Fraud

Fraud Comes to Apple Pay
Modern Attacks are Diverse and Coordinated

Malicious Account Army
(Mass Registration and ATO)

Transaction Fraud
Fake Reviews and Likes
Promotion Abuse

Crime Ring

Mass Attacks with Diverse Techniques

Vulnerabilities
Common Digital Info in Application-Level Events

All application-level events from multiple online service verticals

Global Intelligence Network

- 410 Million+ IP addresses
- 3.6 Million+ Email domains
- 300,000+ OS versions
- 5.3 Million+ User agent strings
- 160,000+ Device types
- 700,000+ Phone prefixes

From 3 Billion+ global users, 600 Billion+ events and growing
Leverage Combined Data

Global Intelligence Network

Financial Social
E-Comm Mobile

Deep Learning

Fraud score

Derive granular user behavior information
- New user ratio
- Fraudulent user ratio
- First/Last seen time
- Proxy/Data center IP
- Geolocation
-
Deep Learning Has Seen Tremendous Success
Many Deep Learning Tools

mxnet T CNTK
theano DL4J DEEPLYARNING4J
Chainer Caffe2

Keras
Serving ML/DL in Production is Challenging

“The required surrounding infrastructure is vast and complex.”

Spark and TensorFlow’s Strengths in Productionizing Machine Learning

Pros:
• Unified engine (end-to-end solution)
• Simple API
• Speed

Cons:
• Deep learning integration under development

Pros:
• Production ready (if done right)
• Extensive ML API for various tasks

Cons:
• Limited data pre-processing support
• Not end-to-end solution
Combining Spark and TensorFlow for DL Tasks

Active direction in Spark community
Spark integration with TensorFlow

- TensorflowOnSpark
- DeepLearningPipeline
- Tensorframe
- ...

Can we combine TensorFlow with Spark applications (Java) to apply DL to fraud detection?
A Typical Machine Learning Workflow

Training
- Raw data → Features → Modeling → Evaluation

Serving
- Raw data → Features → Inference

Requirements:
1. Treat anti-fraud application as a classification problem
2. Training serving consistency
3. Post analysis to understand model performance in new applications
Understanding Inference Results is Critical

Test data → TensorFlow model → Fraud Score 95

- Labels
 - Source of label
- Reason
 - Top features
 - Heuristics
- Slice and Dice
 - Imbalanced labels
 - Subsetting data
 - FN/FP debug

Being able to post-analyze on the inferred data is critical for model development
How We Leverage Spark and TensorFlow

- Spark is used in pre-processing pipeline to prepare training data for DL models
- TensorFlow is used to handle DL model training and serving workflows
- Spark is used for post-analysis and model evaluation
Spark for Generating Training and Serving Data

Pre-processing
- Load data into dataframe
- Each user defined function (UDF) is built from a feature function
- Uniform API

Serving
- Every entry of data point is pre-processed and then fed to DL model for inference
- The same feature function is used to process data at serving time

Dataframe
UDF
Origin feature
Derived feature
Modeling

Serving data
Feature functions
Inference
SparkSQL and TensorFlow Serving for Batch Inference

- Use dataframe API to load random testing data
- Leverage TF Serving for model inference
- Developed client (Java) to “talk” to TF model
- Inference result is returned as a new dataframe with one extra column – “predictions”
- Post-analysis can be done on the resulting dataframe – with both features and scores
Leverage Combined Data

Global Intelligence Network

Financial | Social
E-Comm | Mobile

Derive granular user behavior information

- New user ratio
- Fraudulent user ratio
- First/Last seen time
- Proxy/Data center IP
- Geolocation
- ...

Deep Learning

Fraud score 95
Evaluation: Multiple vs. Single Dimension

![Chart showing comparison between Deep Learning, IP Blacklist, Email Domain Blacklist, and User-agent Blacklist in terms of Precision, Recall, and F1 Score.]
Improving Existing Production Model
Improving with Client-Specific Labels

Fraud Detections

![Bar chart showing the comparison between Original Production Model, Production Model with Generic DL Model, and Production Model with Client-Specific DL Model in terms of # Fraud Detections.](chart)

- Original Production Model: Approximately 3500 detections
- Production Model with Generic DL Model: Approximately 4000 detections
- Production Model with Client-Specific DL Model: Approximately 5000 detections

Data by DATAVISOR
Summary

• Spark + TensorFlow makes deep learning applications simpler
• Lessons from applying ML to new domain
 • Feature engineering
 • Post analysis to understand results
• Deployed successfully in production clients with improved results

• Thanks to Arthur Meng, Yang Xu, Yuetong Wang, Boduo Li