The Evolution of Netflix’s S3 Data Warehouse

Ryan Blue & Dan Weeks
September 2018 - Strata NY
Overview

- Netflix Architecture
- S3 Data Warehouse
- Iceberg Tables
- What’s Next
Cloud native data warehouse
Architectural Principles

- Separate Compute and Storage
- Isolate Different Workloads
- Single Source of Truth
Tech Stack

- **S3 as storage layer**
 - Metadata in Hive Metastore

- **EC2 as compute layer**
 - Hadoop + YARN

- **Spark, Presto (and a little Hive and Pig)**
S3 Data Warehouse
Hadoop file system compatibility with S3
S3 as a File System

<table>
<thead>
<tr>
<th>HDFS</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>create()</td>
<td>REST.PUT.OBJECT</td>
</tr>
<tr>
<td>open()</td>
<td>REST.GET.OBJECT</td>
</tr>
<tr>
<td>listStatus()</td>
<td>REST.GET.BUCKET</td>
</tr>
<tr>
<td>delete()</td>
<td>REST.DELETE.OBJECT</td>
</tr>
<tr>
<td>rename()</td>
<td>REST.COPY.OBJECT +</td>
</tr>
<tr>
<td></td>
<td>REST.DELETE.OBJECT</td>
</tr>
</tbody>
</table>
What about performance?
Performance & Compatibility

- **Performance**
 - Individual operations take longer
 - Some operations do not map cleanly
 - Break contracts to optimize

- **Commit Path**
 - Relies on expensive rename
 - Creates multiple copies with versioning
Optimizing Commits

- **The “batch” pattern**
 - Never delete data as part of a job
 - Always write data to new paths
 - Atomically swap data locations

- **S3 Committer**
 - Use features like multi-part upload
 - Allows for “append” support
What about consistency?
Consistent Listing *(s3mper)*

- **Overlay a consistent view of metadata**
 - Track file system metadata externally
 - Expire old metadata and rely on S3

- **Check listings against consistent system**
 - Fail or delay until view is consistent
 - Manually resolve collisions
Challenges

- **Maintenance Cost is High**
 - Custom changes per execution engine
 - Never implemented in Presto or Hive
 - Behaviors differ slightly by implementation

- **Platform issues are surfaced to users**
 - Append is not atomic
 - Automatic overwrite
 - Table operations can be inconsistent
Common Threads

- **File System**
 - Works around differences in behaviors
 - Trades correctness for fewer S3 calls

- **s3mper**
 - Works around S3 prefix-listing inconsistency

- **S3 committers and Batch Pattern**
 - Works around lack of atomic changes to file listings
 - Works around lack of cheap rename in S3
 - Needed to avoid using S3 file system for silly operations
Maybe the problem is using S3 as a file system?
Why are we using S3 this way?
Hive Table Design

- Key idea: **organize data in a directory tree**

```sh
date=20180513/  # Directory for the date
 |  hour=18/
 |   |  ...  # More hours
 |  hour=19/
 |   |  part-000.parquet
 |   |  ...  # More files
 |  hour=20/
 |   |  ...  # More files
 |  ...  # More dates
```
Hive Table Design

- Filter by directories as columns

```sql
SELECT ... WHERE date = '20180513' AND hour = 19
```

date=20180513/
 |- hour=18/
 | |- ...
 |- hour=19/
 | |- part-000.parquet
 | |- ...
 | |- part-031.parquet
 |- hour=20/
 | |- ...
 |- ...
```
Design Problems

- Table state is stored in two places
  - Partitions in the Hive Metastore
  - Files in a FS with no transaction support

- Still requires directory listing to plan jobs
  - $O(n)$ listing calls, $n = \#$ matching partitions
  - Eventual consistency breaks correctness

- Requires elaborate locking for “correctness”
  - Nothing respects the locking scheme
Iceberg’s Design

- Key idea: **track all files in a table** over time
  - A **snapshot** is a complete list of files in a table
  - Each write produces and commits a new snapshot
Snapshot Design Benefits

- Snapshot isolation without locking
  - Readers use a current snapshot
  - Writers produce new snapshots in isolation, then commit

- Any change to the file list is an atomic operation
  - Append data across partitions
  - Merge or rewrite files
Design Benefits

- No expensive or eventually-consistent FS operations:
  - No directory or prefix listing
  - No rename: data files written in place

- Reads and writes are isolated and all changes are atomic

- Faster scan planning, distributed across the cluster
  - $O(1)$ manifest reads, not $O(n)$ partition list calls
  - Upper and lower bounds used to eliminate files

- Reliable CBO metrics
Iceberg replaces s3mper, batch pattern, and S3 committers
Want more specifics?

Come to the Iceberg talk!

At 5:25 today in 1E09
What’s next?
Today: A narrow paved path

- **New to Hadoop? Big data is great!** Just remember . . .
  - You need to know the physical layout of tables you read
  - Make sure you don’t write too many files – or too few
  - Appends are actually overwrites, except in Presto
  - Don’t write from Presto (but nothing will stop you)
  - You shouldn’t use timestamps or nested types
  - You can’t drop columns in CSV tables
  - And by CSV, we don’t really mean CSV
  - You can’t rename columns in JSON tables
  - If you rename columns in Parquet, either Presto or Spark will work, but not both
  - . . .
While we’re fixing tables . . .

- **Hidden partitioning**
  - Partition filters derived from data filters
  - No more accidental full table scans

- **Full schema evolution**
  - Supports add, drop, and rename columns

- **Reliable support for types**
  - date, time, timestamp, and decimal
  - struct, list, map, and mixed nesting
Table Layout is Hidden

- Queries are not broken by layout changes

- Physical layout can evolve without painful migration
  - Mistakes can be fixed
  - Prototypes can move to production faster
  - Tables can change as volume grows over time

- Data Platform can transparently fix table layout
Snapshot-based Tables

- Any write is atomic – either complete or invisible
  - Rewrite files instead of partitions
  - Tables never have partially committed data

- Simple, built-in change detection
  - Cache and materialized view maintenance
  - Incremental processing

- Data Platform can monitor and fix data files
  - Compact small files
  - Repartition to a new layout
Table Format Library

- Common implementation for table operations
  - Write settings are per table, like row group size
  - Read defaults are set in one place, like split combination

- Simple data gathering
  - Log scan predicates and projection to Kafka
  - Recommend optimizations based on actual use

- Data Platform can automate tuning recommendations
  - Test file format tuning settings *per table*
  - Update table to affect all writes
Questions?
Additional Iceberg Slides
Case Study: Atlas

- Historical Atlas data:
  - Time-series metrics from Netflix runtime systems
  - 1 month: 2.7 million files in 2,688 partitions
  - Problem: cannot process more than a few days of data

- Sample query:

```sql
select distinct tags['type'] as type
from iceberg.atlas
where
 name = 'metric-name' and
 date > 20180222 and date <= 20180228
order by type;
```
Case Study: Atlas Performance

- Hive table – with Parquet filters:
  - 400k+ splits per day, not combined
  - EXPLAIN query: **9.6 min** (planning wall time)

- Iceberg table – partition data filtering:
  - 15,218 splits, combined
  - **13 min** (wall time) / 61.5 hr (task time) / 10 sec (planning)

- Iceberg table – partition and min/max filtering:
  - 412 splits
  - **42 sec** (wall time) / 22 min (task time) / 25 sec (planning)
Iceberg Metadata

- Implementation of snapshot-based tracking
  - Adds table schema, partition layout, string properties
  - Tracks old snapshots for eventual garbage collection

- Table metadata is immutable and always moves forward
- The current snapshot (pointer) can be rolled back
Snapshots are split across one or more **manifest files**
- Manifests store partition data for each data file
- Reused to avoid high write volume
Manifest File Contents

- Basic data file info:
  - File location and format
  - Iceberg tracking data

- Values to filter files for a scan:
  - Partition data values
  - Per-column lower and upper bounds

- Metrics for cost-based optimization:
  - File-level: row count, size
  - Column-level: value count, null count, size
Commits

- To commit, a writer must:
  - Note the current metadata version – the base version
  - Create new metadata and manifest files
  - Atomically swap the base version for the new version

- This atomic swap ensures a linear history

- Atomic swap is implemented by:
  - A custom metastore implementation
  - Atomic rename for HDFS or local tables
Commits: Conflict Resolution

- Writers *optimistically* write new versions:
  - Assume that no other writer is operating
  - On conflict, retry based on the latest metadata

- To support retry, operations are structured as:
  - **Assumptions** about the current table state
  - **Pending changes** to the current table state

- Changes are safe if the assumptions are all true
Commits: Resolution Example

- Use case: safely merge small files
  - Merge input: file1.avro, file2.avro
  - Merge output: merge1.parquet

- Rewrite operation:
  - **Assumption:** file1.avro and file2.avro are still present
  - **Pending changes:**
    - Remove file1.avro and file2.avro
    - Add merge1.parquet

- Deleting file1.avro or file2.avro will cause a commit failure