REAL-TIME DEEP LEARNING INFERENCE AND VISUAL INSPECTION

Moty Fania
Principal Engineer, Advanced Analytics
New York, Sep 2018
Legal notices

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.
Agenda

Advanced Analytics @ Intel
Corporate AI concepts
Deep learning Inference system
Visual inspection
 ▪ Use cases
 ▪ Architecture
Harnessing Analytics

- Descriptive Analytics
 - What happened?
 - Information
 - Hindsight

- Diagnostic Analytics
 - Why did it happen?
 - Insight

- Predictive Analytics
 - What will happen?

- Prescriptive Analytics
 - How can we make it happen?
 - Optimization
 - Foresight

Source: Gartner
About Us – Advanced Analytics @ Intel

<table>
<thead>
<tr>
<th>VALUE</th>
<th>HOW</th>
<th>EMBED LEARNING</th>
<th>HW VALIDATION</th>
<th>PRODUCT DEV</th>
<th>SALES</th>
<th>INDUSTRIAL IOT</th>
<th>HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Improve products power/performance</td>
<td>Cut product time to market</td>
<td>Reduce test cost and improve quality</td>
<td>Increase revenue</td>
<td>Reduce Manufacturing cost</td>
<td>Improve clinical trails outcome</td>
</tr>
<tr>
<td></td>
<td>Adaptive & personalized HW</td>
<td>Automated validation with Context</td>
<td>Personalized units testing</td>
<td>Autonomous accounts coverage</td>
<td>Proactive actuation to changes</td>
<td>Continuance Monitoring at home</td>
<td></td>
</tr>
</tbody>
</table>

VISION: PUT AI TO WORK FOR HUMAN EXPERTS
AI in a Nutshell

Artificial intelligence is about replacing human decision making with more sophisticated technologies.

- These are not repetitive tasks, but rather judgment-based work
- Requires a more complex set of algorithms and machine learning which can use a variety of inputs to recognize patterns, predict future outcomes and make decisions.

Narrow AI

Also referred to as “weak AI.” It is the only form of Artificial Intelligence achieved so far. This is AI that works within a very limited context, and can’t take on tasks beyond its field.
Corporate AI – “Narrow AI“ Use Cases

SALES

DESIGN

VISUAL INSPECTION

PRODUCT DEVELOPMENT
Our Visual Inspection Challenge

- Source: Full HD video streams from multiple cameras
- Multiclass classification problem – ~15 classes (multiple DL algorithms required)
- Inspection process will be running 24x7 - detect “issues” at frame level online
- Low tolerance for mistakes – very high precision & recall required
- Potential to scale out to hundreds of input cameras
Real Time DL Inference – What is Required?

- Production Inference service for DL models
- Smart in-memory cache for data batching, sequencing
- Fast, scalable APIs for data ingestion & real time responses
- Sync – Async calls
- Full Scalability
ARCHELON

A scalable, fault tolerant and fully asynchronous serving system for DL models
MODEL SERVING
Deep Learning Lifecycle with TensorFlow

TRAINING

TensorFlow

INERENCE

SERVING

* Other names and brands may be claimed as the property of others.
Tensor Flow Serving

A flexible, high-performance serving system for machine learning models, designed for production environments

We have added the following capabilities:

- Simple APIs to deploy new models
- Generic client to query any model (sync / Async)
- Optimized Docker image for CPU & GPU
- Implementation within Kubernetes with performance optimizations & scaling
- Full automation of deployment

* Other names and brands may be claimed as the property of others.
BATCHING & SEQUENCING
(The Data Store)
Batch Size for Optimal Inference Throughputs

- To maximize the utilization of inference HW and minimize its cost, we have to apply batches vs. single frame inference.
- The goal is achieving the right balance between latency and throughput.
- Batch size is determined while keeping latency under the given latency requirements.

2 Socket Intel® Xeon® Scalable Processor Inference Throughput Performance (Images/Second)

Source: https://software.intel.com/en-us/articles/intel-processors-for-deep-learning-training
Redis is an open source data structure store that works with in-memory datasets

Used as a persistence database, cache and message broker

It supports data structures such as strings, hashes, lists, sets, sorted sets

Other features include:
- Transactions
- Pub/Sub
- Keys with a limited time-to-live
- Clustering

* Other names and brands may be claimed as the property of others.
Batch Management with REDIS

* Other names and brands may be claimed as the property of others.
The Latency Challenge

- ±100 f/sec
- 5 X CNNs
- 2 X LSTM
- ML Reasoning
- Act

* Other names and brands may be claimed as the property of others.
Asynchronous Inference Unit (AIU)

- Always ON
- Continuous resource utilization
- Stateless
- Dynamic Batching
- Logical grouping of Models – “Units”
- Easily scalable

* Other names and brands may be claimed as the property of others.
AIU Allocation

AIUs enable flexibility and Separation of concerns

Can be allocated as required

- per model
- per camera / source
- Latency / throughput
- Inference HW

Example: Dedicate AIU per model

* Other names and brands may be claimed as the property of others.
Handling Compound Result

- The System supports compound results based on an ensemble of ML / DL models
- Interim results are stored into Redis and a combiner process is responsible for applying the final logic
THE SERVING API
The Serving API

* Other names and brands may be claimed as the property of others.
Logic in Client

- Fetch next Frame
- **Call API 1** to Post Frame with metadata

- Sleep for X ms
- **Call API 2** – to get inference results for next set of processed frames
IMPLEMENTATION
System Flow Illustration

* Other names and brands may be claimed as the property of others.
from archelon.builder.app_builder import AppBuilder
import SimpleModelUtil
import SimpleModelProcessingResultsLogic
import SimpleResultsLogic
import os

models_config = "%s/models_service.ini" % os.environ["CONF_FOLDER"]

with AppBuilder() as app_builder:
 .add_model('DNN1', SimpleModelUtil, 'u1', 'g1')
 .add_model('DNN2', SimpleModelUtil, 'u1', 'g1')
 .add_models_processing('u1', 'g1', SimpleModelProcessingResultsLogic, models_config)
 .add_results_logic('u1', SimpleResultsLogic)

app = app_builder.build()
app.start()
Why Docker?

- Portability and ease of deployment anywhere while avoiding the dependency hell
- Docker guarantees that the software will always run the same, regardless of its environment.
- A unit of isolation (decoupled)
- Modularity and Scale Out

* Other names and brands may be claimed as the property of others.
Scale Out with Kubernetes

- An open-source system for automating deployment, scaling, and management of containerized applications.
- Groups containers that make up an application into logical units for easy management and discovery.
- Provides container grouping, load balancing, auto-healing, scaling features
- Progressively rolls out changes and updates without rebuilding images

A FLEXIBLE CLUSTERING TECHNOLOGY FOR CONTAINER BASED PLATFORMS

* Other names and brands may be claimed as the property of others.
Use Case 2: Wafer Image Inspection

- Detecting wafer defects based on optic microscope images.
- Input consists of images of defects and reference images of wafers, as well as tool metadata.
Other Potential Applications

- Fast Search in a Video
- Real Time Text Analytics – Summarizer, Classifier
- Security and Surveillance
- Industrial IoT Use Cases
IT@INTEL: Sharing Intel IT best practices with the world

Learn more about Intel IT’s initiatives at: www.intel.com/IT
THANK YOU!