
Using distributed tracing to solve
performance and operational
challenges

Naoman Abbas October 2, 2018

Engineering Manager

Visibility
Metrics
Log Search
Distributed Tracing

Naoman Abbas

Helping people discover
and do what they love
● +250M monthly active users
● +3T recommendations per year
● +100B pins
● hundreds of services

Pinterest

Agenda

1Intro
2Pintrace
3Tools

agenda Tracing 1 2 3 4

Intro

Why Distributed Tracing?

Client CDN API

Microservice Architecture

● Performance tuning
● Root-cause analysis
● Operation

Distributed
Tracing

Distributed Tracing
Service 1 Service 2

Distributed Tracing
Service 1 Service 2

Server
Receive
T0

Distributed Tracing
Service 1 Service 2

Server
Receive
T0 Client

Send
T1 Server

Receive
T2

Distributed Tracing
Service 1 Service 2

Server
Receive
T0

Client
Receive

T4

Client
Send

T1

Server
Send
T3

Server
Receive
T2

Distributed Tracing
Service 1 Service 2

Server
Receive
T0

Server
Send
T5

Client
Receive

T4

Client
Send

T1

Server
Send
T3

Server
Receive
T2

Distributed Tracing
Service 1 Service 2

Span

Server
Receive
T0

Server
Send
T5

Client
Receive

T4

Client
Send

T1

Server
Send
T3

Server
Receive
T2

Distributed Tracing
Service 1 Service 2

Span
TraceServer

Receive
T0

Server
Send
T5

Client
Receive

T4

Client
Send

T1

Server
Send
T3

Server
Receive
T2

agenda Pintrace 1 2 3 4

Pintrace

Pintrace Architecture

CDN API

Trace Analyzer

Python Client

Logging Service

agenda Tools 1 2 3 4

Tools

● Open source
● Search traces
● View trace details
● Latency analysis

1. Zipkin UI

Zipkin

Span Details

● Visualize Elasticsearch data
● Finding trends
● Operations

2. Kibana

Kibana Dashboards

API Errors Dashboard

● Offline analysis
● Aggregate view of traces
● Diff between sets of traces
● Root cause analysis

3. Trace Analyzer

Architecture
Jupyter

notebook

Pintrace
pipeline

Spans

Elasticsearch

Reports

1

2

3 4

5
Spark job

Trace Analyzer - Input Parameters

Trace Analyzer - Report Summary
First traces Second traces Difference Percent difference

Number of traces 429 459 30 6.99301

Number of services 14 14 0 0

Average overall latency 573.322 806.25 232.928 40.6278

Calls per trace 244.07 235.928 -8.14183 -3.33586

Total number of calls 101902 107186 5284 5.18537

Average self-latency 4.71562 4.67538 -0.0402365 -0.853259

Trace Analyzer - Report
Downstream Services Latency

First traces Second traces Difference

Service1 99.3975 118.445 19.0478

Service2 88.9196 92.2861 3.36652

Service2 67.0345 89.5526 22.5181

... 65.3212 52.185 -13.1362

... 10.4688 10.6408 0.172027

... 10.4142 10.8673 0.453135

... 9.80483 10.8275 1.02263

... 9.07438 8.88087 -0.193505

... 7.60317 8.72428 1.12111

First
traces

Second
traces Difference

Service1 764 1350 586

Service2 5526 4891 -635

... 1924 1723 -201

... 596 400 -196

... 530 236 -294

... 79 65 -14

... 34 29 -5

... 32 26 -6

Downstream Services Calls

● Ad hoc analysis
● Simplify data access
● Simplify data processing

4. Python Library

Python Library
query spans
end_time = datetime.datetime.now()
start_time = end_time - datetime.timedelta(minutes=1)

query = EsQuery().set_endpoint("v3_home_feed").set_local_service_name("ngapi").set_start_end_time(start_time, end_time) \
 .set_annotation("api.client.id.name=Android").set_source_fields("traceId")

es_client = EsClient(ES_ENDPOINT, ES_INDEX)
scroll_response = es_client.get_with_scroll(query)
trace_ids = list(map(lambda span: span.trace_id, scroll_response.spans))

query traces
get_traces_response = es_client.get_traces_for_span_ids(trace_ids)

group spans by trace id
spans = get_traces_response.spans
traces = defaultdict(list)
for span in spans:
 traces[span.trace_id].append(span)

process traces
for trace_id, spans in traces.items():
 logger.info("Trace id: %s , span count: %s", trace_id, len(spans))

● Online analysis at trace level
● Feature extraction
● Flexible storage schema
● Automation (canary analysis,

alerting)

5. Post Processor

Architecture

Reporting

Alerting

Python Client

Performance
Engineers

Post Processor &
Feature Extractor

Processed Data
{
 "traceSummary": {

 "spanCount": 61,
 "rootService": "android",
 "rootEndpoint": "pwt/pin_save_request",
 "timeStampMillis": 1538094458613,
 "traceId": "3ac5149533006108",
 "networkCalls": 52,
 "completeTrace": true
...

 },
 "android": {

 "country": "CA",
 "pwtDuration": 34
...

 },
….

 "cdn": {
 "v3ClientToCdnLatency": 145000,
 "v3CdnToAwsLatency": 20551,
 "v3Endpoint": "/v3/pins/37872464/repin/",
...

 },
 "ngapi": {

 "v3Endpoints": ["v3_repin_handler"],
 "v3EndpointCount": 1,
 "clientType": "Android",
 "ngapiCluster": "prod",
 "v3Latency": 265449
...

 }
}

Latency Breakdown

Summary

Zipkin UI
Kibana

Trace Analyser
Python Client

Post Processor

Viewing single trace
View trends and metrics
Offline analysis
Ad hoc analysis
Online analysis and feature
extraction

Questions

© Copyright, All Rights Reserved, Pinterest Inc. 2017

Template // Jan
2017

