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Intro



Why Distributed Tracing?

Client CDN API

Microservice Architecture





● Performance tuning
● Root-cause analysis
● Operation

Distributed 
Tracing
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Pintrace



Pintrace Architecture

CDN API

Trace Analyzer

Python Client

Logging Service
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● Open source
● Search traces
● View trace details
● Latency analysis

1. Zipkin UI



Zipkin







Span Details









● Visualize Elasticsearch data
● Finding trends
● Operations

2. Kibana



Kibana Dashboards



API Errors Dashboard



● Offline analysis
● Aggregate view of traces
● Diff between sets of traces
● Root cause analysis

3. Trace Analyzer



Architecture
Jupyter 

notebook

Pintrace 
pipeline

Spans

Elasticsearch

Reports
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Spark job



Trace Analyzer - Input Parameters



Trace Analyzer - Report Summary
First traces Second traces Difference Percent difference

Number of traces 429 459 30 6.99301

Number of services 14 14 0 0

Average overall latency 573.322 806.25 232.928 40.6278

Calls per trace 244.07 235.928 -8.14183 -3.33586

Total number of calls 101902 107186 5284 5.18537

Average self-latency 4.71562 4.67538 -0.0402365 -0.853259



Trace Analyzer - Report
Downstream Services Latency

First traces Second traces Difference

Service1 99.3975 118.445 19.0478

Service2 88.9196 92.2861 3.36652

Service2 67.0345 89.5526 22.5181

... 65.3212 52.185 -13.1362

... 10.4688 10.6408 0.172027

... 10.4142 10.8673 0.453135

... 9.80483 10.8275 1.02263

... 9.07438 8.88087 -0.193505

... 7.60317 8.72428 1.12111

First 
traces

Second 
traces Difference

Service1 764 1350 586

Service2 5526 4891 -635

... 1924 1723 -201

... 596 400 -196

... 530 236 -294

... 79 65 -14

... 34 29 -5

... 32 26 -6

Downstream Services Calls



● Ad hoc analysis
● Simplify data access
● Simplify data processing

4. Python Library



Python Library
# query spans
end_time = datetime.datetime.now() 
start_time = end_time - datetime.timedelta(minutes=1)

query = EsQuery().set_endpoint("v3_home_feed").set_local_service_name("ngapi").set_start_end_time(start_time, end_time) \
   .set_annotation("api.client.id.name=Android").set_source_fields("traceId")

es_client = EsClient(ES_ENDPOINT, ES_INDEX)
scroll_response = es_client.get_with_scroll(query)
trace_ids = list(map(lambda span: span.trace_id, scroll_response.spans))

# query traces
get_traces_response = es_client.get_traces_for_span_ids(trace_ids)

# group spans by trace id
spans = get_traces_response.spans
traces = defaultdict(list)
for span in spans:
   traces[span.trace_id].append(span)

# process traces
for trace_id, spans in traces.items():
   logger.info("Trace id: %s , span count: %s", trace_id, len(spans))



● Online analysis at trace level
● Feature extraction
● Flexible storage schema
● Automation (canary analysis, 

alerting)

5. Post Processor



Architecture

Reporting

Alerting

Python Client

Performance 
Engineers

Post Processor & 
Feature Extractor



Processed Data
{
     "traceSummary": {

  "spanCount": 61,
  "rootService": "android",
  "rootEndpoint": "pwt/pin_save_request",
  "timeStampMillis": 1538094458613,
  "traceId": "3ac5149533006108",
  "networkCalls": 52,
  "completeTrace": true
...

     },
     "android": {

  "country": "CA",
  "pwtDuration": 34
...

     },
….
     

     "cdn": {
  "v3ClientToCdnLatency": 145000,
  "v3CdnToAwsLatency": 20551,
  "v3Endpoint": "/v3/pins/37872464/repin/",
...

     },
     "ngapi": {

  "v3Endpoints": ["v3_repin_handler"],
  "v3EndpointCount": 1,
  "clientType": "Android",
  "ngapiCluster": "prod",
  "v3Latency": 265449
...

     }
}



Latency Breakdown



Summary

Zipkin UI
Kibana

Trace Analyser
Python Client

Post Processor

Viewing single trace
View trends and metrics
Offline analysis
Ad hoc analysis
Online analysis and feature 
extraction



Questions
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