
Beyond Accidental Architecture
James Thompson — Principal Software Engineer @ Nav

@plainprogrammer #VelocityConf

Thank you all for coming out this afternoon.

Today I want to talk about how to take our teams beyond accidental architecture.

I want to start with a fictional tale.

@plainprogrammer #VelocityConf

At the beginning

* Frameworks provide sufficient constraints

* Libraries introduce some complexity, but we can handle it

* Structure is obvious because things are still simple

As a project grows

* Maybe the monolith gets broken up

* Or, maybe it doesn’t

* Either way, divisions of responsibilities get murky

* Changes in one place cause cascading problems

* New team members take longer to get up to speed

Eventually…

* Some folks start talking about rewriting large portions of the system, or maybe even the whole thing

* Technical debt and labelling stuff as “legacy” becomes more common

* The bug backlog gets deeper with every new feature and release

* We start trying to throw tools, or money, or more people at the problem

But, what we’ve ended up with is a system that no one really likes, which is getting harder to change every day.

How many here can identify with a project anything like that?

I know I can think of several. All started out fine, but slowly crept towards such a sad state.

@plainprogrammer #VelocityConf

That story is about accidental architecture. It happens often enough, but the typical remedies are rarely any different than what started the problem in the first place. Rewrites can’t fix it, neither can moving
from one architectural style to another. Because accidental architecture is the default for any project, no matter its scale or purpose.

I define Accidental Architecture as the state at which circumstances and inattention exceed intentional design within a project.

Things that don’t matter:

* Moral Judgements (Good v. Bad)

* Technical Judgements (Modern v. Legacy)

Things that do matter:

* Suitability for purpose

* Changeability over time

* Unhelpful Abstractions

@plainprogrammer #VelocityConf

How do we change direction while avoiding getting stuck on a one way path?

What should inform how we move forward? 
 
The key is intentionality.

* We need deliberate choices

* We need decisions that account for things that matter

* We need to plan for change

* We need to manage risks better

And I think there are a handful of really good ways to build that kind of intentionality in teams.

@plainprogrammer #VelocityConf

First, we need to understand risk and get good at talking about trade-offs.

There are different kinds of risks and trade-offs, and we need to improve how we prioritize them.

Suitability versus Knowledge — Do we know enough to use something we think is better well?

Fragmentation versus Cohesion — Will this choice drive our team apart or bring us together?

This is about conversations and communication.

Depending on the type of organization, the system, and the people the risks and trade-offs can be incredibly varied.

@plainprogrammer #VelocityConf

Additionally, we need to build our systems humanely.

There are a lot of different ways we can keep this in mind with how we organize and architect our systems:

* Clarity is immensely more valuable than cleverness

* Clarity is usually more valuable than performance

* Your future self shouldn’t regret your current self

* Your teammates would appreciate your consideration

Human code is about thinking about yourself and others. It’s about making everyone’s lives better.

We can be more humane in regards to how we write code, document things, communicate changes, and more.

Think about others as you make decisions around architecture and you’ll come up with better solutions.

@plainprogrammer #VelocityConf

In User-Experience design and Product Discovery there are a whole variety of different kinds of prototypes. From very low fidelity to really high, live data ones.

We ought to have some similar approaches with building systems, ranging from prototypes to generally available products.

* Prototypes help us learn about numerous facets of a problem

* Technical feasibility

* Technical suitability

* Improved estimation

* Identify skill gaps

* Don’t push prototypes into production

* They are Low Fidelity — less tested, less instrumented, not meant to be products

* The output of prototyping is the learning and discovery, so document it

* Minimum Viable Products are where we make the transition

* Instead of cutting corners, like we might with prototypes, we cut scope

* We still need to learn, but about customer value

* We’re aiming to learn from a small set of users about general desirability

This comes back to discipline and advocating, as engineers, that we are stakeholders too.

@plainprogrammer #VelocityConf

The heart of the matter is discipline, and predominantly when it comes to thinking beyond our immediate needs.

We don’t need five year, or two year, or even one year plans.

But if we can think beyond the immediate when it comes to risks, change, quality, the impact we have on others then we’ll be in a much better place.

But, it’s also a team effort. This is not the sort of thing one person can do by themselves.

You can advocate and help coach people. And, that helps a lot. But, it can take a significant amount of time to bring people around.

@plainprogrammer #VelocityConf

Frustration will happen. And there are some common sources of it in my experience that arise from certain kinds of objections and tendencies towards heavy-handedness.

One of the common objections is that it will be claimed that any up front planning is not “Agile.” Those people are not right.

We don’t want to make plans so far in advance that they become wrong by the time we implement them. But, addressing risk, and taking others into consideration is a big part of what agile methodologies
are all about. We’re not talking about doing extensive upfront architectural design, we’re talking about having the right conversations and the most responsible moment.

We want to make sure that our systems are built with the expectation of change in mind, so malleability becomes an important characteristic.

Getting beyond Accidental Architecture should not result in forming an architects’ council, or anything approaching an ivory tower. In the realm of software design, architecture that comes from hands-on
experience is much more valuable than anything theoretical. The best abstractions emerge from working systems.

One of the best antidotes to accidental architecture is finding ways to foster more collaboration instead of less.

@plainprogrammer #VelocityConf

So, where do we start if we want to move towards intentional architecture?

I think how we start also ties in to how we sustain. And I think it all begins with building and sustaining a learning culture.

Getting people out of what they’re used to and hearing new ideas is a great start. Getting to conferences like this. Being part of book clubs. Doing lunch and learns that are not strictly about the things you’re
doing in your business right now.

Anything we can do to get people learning and growing beyond what they need right now is a perfect place to start.

These are three books I would highly recommend. They are targeted at software architecture, but the things discusses in Just Enough Software Architecture and Building Evolutionary Architecture can be
applied to other kinds of technical architecture as well.

Clean Architecture is pretty much only useful for Software Architecture.

@plainprogrammer #VelocityConf

Lets take a few minutes for questions.

