Deploying Deep Learning Models

OSCON Tensorflow Day 2018

Hannes Hapke

@hanneshapke

Does the following scenario sound familiar?
Joe (data scientist): Hey Jane, my model is validated and tested. I would like to deploy it.

Jane (backend engineer): Great, do you have an API for it?
Joe (data scientist): Hey Jane, my model is validated and tested. I would like to deploy it.

Jane (backend engineer): Great, do you have an API for it?

Joe: API? Our model runs on TF/Python. The entire back-end runs on Ruby. I haven’t written Ruby in years ...

Jane: Ufff, I have never written Tensorflow code. Is that a Python library?
Joe (data scientist): Hey Jane, my model is validated and tested. I would like to deploy it.

Jane (backend engineer): Great, do you have an API for it?

Joe: API? Our model runs on TF/Python. The entire back-end runs on Ruby. I haven’t written Ruby in years …

Jane: Ufff, I have never written Tensorflow code. Is that a Python library?

Joe: Hm, I guess, I’ll write some Ruby API code then.
What's the problem?
Who owns the API?
Data science code deployed to API instances?
Different language expertises are needed
Coordinate release cycles between teams?
Coordination about model versioning
Hi, I'm Hannes.

Data Science Engineer at Cambia Health Solutions
Agenda

- Requirements for Model Deployments
- Sample project
- How not to deploy models
- Deploying Models
 - with Tensorflow Serving on premise
 - in the Cloud
 - with alternative tools
Infrastructure Architectures
Infrastructure Architectures

Loading models on the backend server
Infrastructure Architectures

Loading models on the backend server

Using a model server
Model deployments should ...
Model deployments should ...

1. Separate data science code from backend code
Model deployments should ...

1. Separate data science code from backend code

2. Reduce boilerplate code
Model deployments should ...

1. Separate data science code from backend code
2. Reduce boilerplate code
3. Allow isolation of memory and CPU requirements
Model deployments should ...

1. Separate data science code from backend code
2. Reduce boilerplate code
3. Allow isolation of memory and CPU requirements
4. Support multiple models
Model deployments should ...

1. Separate data science code from backend code

2. Reduce boilerplate code

3. Allow isolation of memory and CPU requirements

4. Support multiple models

5. Server should handle requests (e.g. timeouts)
Sample Project

Model Structure

Let's predict Amazon product ratings based on the comments with a small LSTM network.

```python
model_input = Input(shape=(MAX_TOKENS,))
x = Embedding(input_dim=len(CHARS), output_dim=10, input_length=MAX_TOKENS)(model_input)
x = LSTM(128)(text_input)
output = Dense(5, activation='softmax')(x)
model = Model(inputs=text_input, outputs=output)
optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)

model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, verbose=1, validation_data=(x_test, y_test), callbacks=[keras.callbacks.ModelCheckpoint('/tmp/amazon_ratings', monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)])
```
Testing our Model

Negative Review

```python
>> test_sentence = "horrible book, don't buy it"
>> test_vector = clean_data(test_sentence, max_tokens=MAX_TOKENS, sup_chars=CHARS)
>> model.predict(test_vector.reshape(1, MAX_TOKENS, len(CHARS)))
[[0.5927979 0.23748466 0.10798287 0.03301411 0.02872046]]
```

Positive Review

```python
>> test_sentence = "Awesome product."
>> test_vector = clean_data(test_sentence, max_tokens=MAX_TOKENS, sup_chars=CHARS)
>> model.predict(test_vector.reshape(1, MAX_TOKENS, len(CHARS)))
[[0.03493131 0.0394276 0.08326671 0.2957105 0.5466638 ]]```
How not to deploy a model ...
## Deploy with Flask + Keras

```python
@app.route('/predict', methods=['POST'])
def predict():
 # initialize the data dictionary that will be returned from the view
 data = {'success': False}
 # ensure an image was properly uploaded to our endpoint
 if flask.request.method == 'POST':
 if flask.request.files.get('image'):
 # read the image in PIL format
 image = flask.request.files['image'].read()
 image = Image.open(io.BytesIO(image))
 # preprocess the image and prepare it for classification
 image = prepare_image(image, target=(224, 224))
 # classify the input image and then initialize the list of predictions to return to the client
 preds = model.predict(image)
 results = imagenet_utils.decode_predictions(preds)
 data['predictions'] = []
 # loop over the results and add them to the list of returned predictions
 for (imagenetID, label, prob) in results[0]:
 r = {'label': label, 'probability': float(prob)}
 data['predictions'].append(r)
 # indicate that the request was a success
 data['success'] = True
 # return the data dictionary as a JSON response
 return flask.jsonify(data)
```

70% remaining

Code snippet from [Keras Blog](https://keras.io)
Don't deploy that way if can avoid it.
Why?
Why?

1. Mix of data science and backend code
Why?

1. Mix of data science and backend code

2. Boilerplate API code
Why?

1. Mix of data science and backend code
2. Boilerplate API code
3. API instances need enough memory to load models
Why?

1. Mix of data science and backend code
2. Boilerplate API code
3. API instances need enough memory to load models
4. Multiple models?
Why?

1. Mix of data science and backend code
2. Boilerplate API code
3. API instances need enough memory to load models
4. Multiple models?
5. No timeout handling
Use Tensorflow Serving instead.
But before that, let's chat about some terms.
Important Terms

Protocol Buffers

Protobufs are a method of serializing structured data. Binary format.

Bazel

Automation tool to build software. Similar to Make or Apache Maven.

gRPC

(Google) Remote Procedure Call. HTTP/2 based. Uses ProtoBuf.

REST

Representational State Transfer. Architectural style for web services.
Welcome Tensorflow Serving!
Steps to deploy a model
Steps to deploy a model

1. Export model structure weights, as well as model signatures as Protobuf
Steps to deploy a model

1. Export model structure weights, as well as model signatures as Protobuf

2. Set up the Tensorflow Server
Steps to deploy a model

1. Export model structure weights, as well as model signatures as Protobuf
2. Set up the Tensorflow Server
3. Create a gRPC client
Steps to deploy a model

1. Export model structure weights, as well as model signatures as Protobuf
2. Set up the Tensorflow Server
3. Create a gRPC client
4. Load the model
Export our Keras model to Protobuf

```python
import os
from keras import backend as K
import tensorflow as tf

tf.app.flags.DEFINE_integer('training_iteration', 1000, 'number of training iterations.')
tf.app.flags.DEFINE_integer('model_version', 1, 'version number of the model.')
tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory.')
FLAGS = tf.app.flags.FLAGS

export_path_base = '/tmp/amazon_reviews'
export_path = os.path.join(tf.compat.as_bytes(export_path_base),
 tf.compat.as_bytes(str(FLAGS.model_version)))

builder = tf.saved_model.builder.SavedModelBuilder(export_path)

signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={'input': model.input}, outputs={'rating_prob': model.output})

builder.add_meta_graph_and_variables(
 sess=K.get_session(), tags=[tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature })

builder.save()
```
Let's unpack what we just saw.
Let's set flags with information relevant for the model

```python
import tensorflow as tf

tf.app.flags.DEFINE_integer('training_iteration', 1000, 'number of training iterations.')
tf.app.flags.DEFINE_integer('model_version', 1, 'version number of the model.')
tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory.')
FLAGS = tf.app.flags.FLAGS
```
Model Signatures

- Tensorflow Serving requires that every model has a model signature
- The signature defines the generic inputs and outputs of a function

```python
signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={model_name + '_input': model.input},
 outputs={model_name + '_output': model.output}
)

builder.add_meta_graph_and_variables(
 sess=K.get_session(),
 tags=[tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
 })
```
Exporting the Model

- The SavedModelBuilder will export your model to a predefined Protobuf format

```python
export_path_base = '/tmp/amazon_reviews'
export_path = os.path.join(
 tf.compat.as_bytes(export_path_base),
 tf.compat.as_bytes(str(FLAGS.model_version)))

print('Exporting trained model to', export_path)

builder = tf.saved_model.builder.SavedModelBuilder(export_path)
...
builder.save()
```
Now you have exported your model.
Exported Models

- You should find these Protobuf files in your folder structure

The files should include a:

- `saved_model.pb`
- `variable.index`
- one or more `variable.data*` files.
Let's set up your Tensorflow server
Creating a Tensorflow Serving Environment

- If you need optimizations, clone the TF Serving repo and build your server with Bazel
- Otherwise install Tensorflow server in a Docker container

```bash
$ git clone git@github.com:hanneshapke/Deploying_Deep_Learning_Models.git
$ docker build --pull -t $USER/tensorflow-serving-devel-cpu \
 -f {path to repo}/\Deploying_Deep_Learning_Models/\examples/Dockerfile .
```
Starting up the Server

- Start up the container with

```bash
$ docker run -it -p 8500:8500
 -v {model_path}/exported_models/amazon_review/:/models
$USER/tensorflow-serving-devel-cpu:latest /bin/bash
```
What's happening inside the Docker container?

- Starting up the Tensorflow Serving instance

```
$[docker bash] tensorflow_model_server --port=8500
 --model_name={model_name}
 --model_base_path=/models/{model_name}
```
What's happening inside the Docker container?

- Starting up the Tensorflow Serving instance

```bash
$ [docker bash] tensorflow_model_server --port=8500
 --model_name={model_name}
 --model_base_path=/models/{model_name}
```

- This should generate output like below

```
2018-06-29 00:02:05.611608: tensorflow_serving/model_servers/server_core.cc:444 Adding/updating models.
2018-06-29 00:02:05.611712: tensorflow_serving/model_servers/server_core.cc:499 (Re-)adding model: amazon_review
2018-06-29 00:02:05.729657: tensorflow_serving/core/basic_manager.cc:716 Successfully reserved resources to load servable (name: amazon_review version: 2)
2018-06-29 00:02:05.729731: tensorflow_serving/core/loader_harness.cc:66 Approving load for servable version (name: amazon_review version: 2)
2018-06-29 00:02:05.729761: tensorflow_serving/core/loader_harness.cc:74 Loading servable version (name: amazon_review version: 2)
...
2018-06-29 00:02:05.855197: tensorflow_serving/core/loader_harness.cc:86 Successfully loaded servable version (name: amazon_review version: 2)
2018-06-29 00:02:05.863820: tensorflow_serving/model_servers/main.cc:323 Running ModelServer at 0.0.0.0:8500 ...
2018-06-29 00:02:05.870805: tensorflow_serving/model_servers/main.cc:333 Exporting HTTP/REST API at:localhost:8501 ...
evhttp_server.cc : 235 RAW: Entering the event loop ...
```
Let's export a new model version

```bash
$ python examples/export_keras_model.py
```
Let's export a new model version

$ python examples/export_keras_model.py

- Tensorflow Serving will detect the new version and load it automatically
Serve multiple models

- Provide a server config file `config.file`

```json
model_config_list: {
 config:
 {
 name: "amazon_reviews",
 base_path: "/models/{model_name}",
 model_platform: "tensorflow",
 model_version_policy: { all: {} }
 },
 config:
 {
 name: "amazon_ratings",
 base_path: "/models/{other_model_name}",
 model_platform: "tensorflow",
 model_version_policy: { all: {} }
 }
}
```
Serve multiple models

- Start the server using config file

Instead of

```bash
$ tensorflow_model_server --port=8500
 --model_name={model_name}
 --model_base_path=/models/{model_name}
```

use

```bash
$ tensorflow_model_server --port=8500
 --model_config_file=/path/to/config/file.config
```
Useful tips

Inspect your models

```
$ saved_model_cli show --dir=/models/{model_name}/{version_number}
 --tag_set serve
 --signature_def serving_default
```
Useful tips

Inspect your models

```bash
$ saved_model_cli show --dir=/models/{model_name}/{version_number}
 --tag_set serve
 --signature_def serving_default

- `saved_model_cli` should return the signature information

The given SavedModel SignatureDef contains the following input(s):
 inputs['amazon_review_input'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 50)
 name: input_1:0

The given SavedModel SignatureDef contains the following output(s):
 outputs['amazon_review_output'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 5)
 name: dense_1/Softmax:0

Method name is: tensorflow/serving/predict
Tensorflow Serving Client

Dependencies

- tensorflow_serving
- grpc

```bash
$ pip install tensorflow-serving-api grpc
```
Tensorflow Serving Client

Connecting to the RPC host

```python
from grpc.beta import implementations
from tensorflow_serving.apis import prediction_service_pb2

def get_stub(host='127.0.0.1', port='8500'):
    channel = implementations.insecure_channel(host, int(port))
    stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
    return stub
```
Tensorflow Serving Client

Request prediction using gRPC

- Very barebone implementation!

```python
def get_model_prediction(model_input, stub,
                          model_name='amazon_review',
                          signature_name='serving_default'):

    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = signature_name

    request.inputs['amazon_review_input'].CopyFrom(
        tf.contrib.util.make_tensor_proto(
            model_input.reshape(1, 50),
            verify_shape=True, shape=(1, 50)))

    response = stub.Predict.future(request, 5.0)  # wait max 5s
    return response.result().outputs['amazon_review_output'].float_val
```
TensorFlow Serving Client

Request prediction using gRPC

- Very barebone implementation!

```python
>>> sentence = "this product is really helpful"
>>> model_input = clean_data_encoded(sentence)

>>> get_model_prediction(model_input, stub)
[0.0250927172601223, 0.03738045319914818, 0.09454590082168579, 0.33069494366645813, 0.5122858881950378]
```
Tensorflow Serving Client

Request prediction from a specific model version

- You can specify the specific model version
- If no model version is provided, TF Serving loads the model with the latest model version

```python
request = predict_pb2.PredictRequest()
request.model_spec.name = 'amazon_review'
request.model_spec.version.value = 1
```
def get_model_meta(model_name, stub):
 request = get_model_metadata_pb2.GetModelMetadataRequest()
 request.model_spec.name = model_name
 request.metadata_field.append("signature_def")
 response = stub.GetModelMetadata(request, 5)
 return response.metadata['signature_def']

>>> meta = get_model_meta(model_name, stub)
>>> print(meta.SerializeToString().decode("utf-8", 'ignore'))
type.googleapis.com/tensorflow.serving.SignatureDefMap
serving_default
amazon_review_input
 _input_1:0
 2@
amazon_review_output{
dense_1/Softmax:0
tensorflow/serving/predict
Ten sorow Serving Clie nt

Obtain model version

def get_model_version(model_name, stub):
 request = get_model_metadata_pb2.GetModelMetadataRequest()
 request.model_spec.name = model_name
 request.metadata_field.append("signature_def")
 response = stub.GetModelMetadata(request, 5)
 return response.model_spec.version.value

>>> model_name = 'amazon_review'
>>> stub = get_stub()

>>> get_model_version(model_name, stub)
2L
Tensorflow Serving Client using REST

- Tensorflow Serving supports REST requests since release 1.8

```bash
[docker bash] tensorflow_model_server --port=8500
--rest_api_port=8501
--model_name={model_name}
--model_base_path=/models/{model_name}
```

- Remember to expose the REST port

```bash
$ docker run -it
-p 8500:8500
-p 8501:8501
-v {model_path}/exported_models/amazon_review:/models
$USER/tensorflow-serving-devel-cpu:latest /bin/bash
```
Tensorflow Serving Client using REST

- The URI should be
 - http://host:port/<URI>:<VERB>
 - URI /v1/models/{model_name}/versions/{model_version}
 - verb classify|regress|predict

- Use the Python requests package for REST calls.

```python
def get_model_prediction(model_input, model_name='amazon_review', signature_name='serving_default'):
    url = get_rest_url(model_name)
    data = {"instances": [model_input.tolist()])
    rv = requests.post(url, data=json.dumps(data))
    if rv.status_code != requests.codes.ok:
        rv.raise_for_status()
    return rv.json()['predictions']
```
Tensorflow Serving Client using REST
How to do A/B Testing?

- Easily possible since multiple versions can be served
- A/B testing of models can be performed by selecting the models from the client side
- Set the specific version in your gRPC or REST request

```python
from random import random

def get_rest_url(model_name, host='127.0.0.1', port='8501',
                  verb='predict', version=None):
    url = "http://{host}:{port}/v1/models/{model_name}".format(
        host=host, port=port, model_name=model_name)
    if version:
        url += 'versions/{version}'.format(version=version)
    url += ':{verb}'.format(verb=verb)
    return url

# 10% of requests to the latest model
version = 1 if random() > 0.1 else None
url = get_rest_url('amazon_review', version=version)
```
Good idea?
Good idea?

1. No mix of data science and backend code
Good idea?

1. No mix of data science and backend code
2. No boilerplate API code
Good idea?

1. No mix of data science and backend code

2. No boilerplate API code

3. APIs can be serverless
Good idea?

1. No mix of data science and backend code
2. No boilerplate API code
3. APIs can be serverless
Good idea?

1. No mix of data science and backend code
2. No boilerplate API code
3. APIs can be serverless
5. Easy request handling
Serving Models via the Cloud

- Exported Tensorflow or Keras models can be served via the *Google Cloud Platform* and *Google Cloud ML Engine*.
- Detailed information on [GCP Model Deployments](#).
Serving Models via Google Cloud ML Engine

- Copy the exported model to a Google storage bucket

```bash
$ gsutil cp -r amazon_review gs://<bucket-name>
$ gsutil ls -r gs://<bucket-name>
```

```
gs://<bucket-name>/amazon_review/:
gs://<bucket-name>/amazon_review/1/:
gs://<bucket-name>/amazon_review/1/saved_model.pb
...
```

- Create a model endpoint in the Google Cloud Platform

- Create a json file with the request data

```bash
$ MODEL_NAME="tf_serving_demo"
$ INPUT_DATA_FILE="request_data.json"
$ VERSION_NAME="amazon_review_prediction"
$ gcloud ml-engine predict --model $MODEL_NAME \ 
  --version $VERSION_NAME \ 
  --json-instances $INPUT_DATA_FILE
```

install of gsutil: https://cloud.google.com/storage/docs/gsutil_install

9% remaining
Other Deployment Options
Other Deployment Options

Seldon

- Deployment solution for ML on Kubernetes
- Supports Scikit, H2O and Tensorflow
- Supports REST and gRPC end-points
- Provides model routers (e.g. for server side A/B testing)
Other Deployment Options

Seldon

- Deployment solution for ML on Kubernetes
- Supports Scikit, H2O and Tensorflow
- Supports REST and gRPC end-points
- Provides model routers (e.g. for server side A/B testing)

MLflow

- Databricks package supports deployments
- Supports Scikit and Tensorflow
- Provides REST end-points
- Supports deployments to AzureML, Amazon Sagemaker, Spark clusters
Kubeflow for all

- Scalable ML stack for Kubernetes
- Supports Jupyter notebooks, and Tensorflow Jobs
- Kubeflow integrations with Tensorflow Serving
- Kubernetes takes care of scaling your ML infrastructure
Conclusion
Conclusion

- Reasons to serve models with TensorFlow Serving
 - Separates data science code from API code
 - No boilerplate code
 - Can handle multiple models and versions
Conclusion

- Reasons to serve models with Tensorflow Serving
 - Separates data science code from API code
 - No boilerplate code
 - Can handle multiple models and versions
- Steps to deploy
 - Export your model
 - Setup your server
 - Request predictions via gRPC or REST
Thank you and happy deploying!

@hanneshapke