Building a Data Science Idea Factory
How to prioritize the portfolio of a large, diverse, and opinionated data science team

Katie Malone
Director of Data Science R&D
Civis Analytics
@multiarmbandit & lineardigressions.com

Skipper Seabold
Director of Data Science R&D
Civis Analytics
@jseabold

Strata Data Conference
San Jose, California
March 7, 2018
We help organizations integrate data science into their business so they can find truth and take action

We revolutionized the presidential campaign process. Now we’re revolutionizing data science for businesses.

- Founded in 2013, Civis Analytics is a data science technology and advisory company with offices in Chicago and Washington, D.C.

- We provide technology to operationalize data science for our own and our clients’ data science teams.

- Today, Civis provides applied data science services and a platform for outcomes-oriented data science.
How our team created a balanced, organizationally-aligned data science roadmap

Many companies struggle in their efforts to become more data-driven because leaders fail to see the value that data science teams can provide and data science teams fail to see kind of value the business needs.

Preliminary

Broad business alignment

The data science team works to get a broad understanding of the overall business goals and provide an honest assessment of the value that data science can deliver.

Early

Deep technical assessment

The data science team translates business goals into data science projects and develops a deep understanding of the risks involved.

Initial

Team & Organizational Consensus

The data science team aligns around the goals and projects. They prioritize the projects into a roadmap, which is broadly communicated.

Ongoing

Execution & Continued Communication

Armed with the business context and an understanding of the moving technical pieces and where things can go wrong, the projects get underway.
Our team and their challenges

This talk is a bit of a deep dive into our team, but the challenges generalize to other organizations. We know because we’ve worked with them and we’ve seen it in practice.

- Data science research and development team
 - Center of excellence model
 - Balance bottom-up science-driven ideas with business goals

- Civis Analytics
 - Data science technology and consulting
 - We work across industries and challenges
Leaders in organizations and stakeholders in analytics projects are thinking about the business objectives

- Getting started with analytics
 - How can I make better data-driven decisions?
 - I don’t really know what data science is. I hear it’s great though!
Leaders in organizations and stakeholders in analytics projects are thinking about the business objectives

- Getting started with analytics
 - How can I make better data-driven decisions?
 - I don’t really know what data science is. I hear it’s great though!

- Realizing returns from investments in analytics
 - How can I help my data scientists or data science teams understand our business objectives?
 - How can I have an active dialogue with my data scientists so we work together toward shared goals?
Data scientists need to balance methodological and technical excellence with practicality and usability

- Doing great data science
 - How, and when, should I get scientific feedback on my work from my peers?
 - What other great ideas are floating around the organization that I might be able to help with?
Data scientists need to balance methodological and technical excellence with practicality and usability

- Doing great data science
 - How, and when, should I get scientific feedback on my work from my peers?
 - What other great ideas are floating around the organization that I might want to help with?

- Making it relevant to the organization
 - If I have more autonomy than top-down direction, how do I ensure that my work has a big impact?
 - How do I advocate for projects that I think will have a big impact?
Managers of data scientists bridge the communication gap between stakeholders and data scientists

- Proving value up the org chart
 - How can I translate the business needs into a project roadmap for my team?
 - Everyone is happier when I proactively manage expectations with my boss, and can communicate the tradeoffs when we’re making decisions.
Managers of data scientists bridge the communication gap between stakeholders and data scientists

- Proving value up the org chart
 - How can I translate the business needs into a project roadmap for my team?
 - Everyone is happier when I proactively manage expectations with my boss, and can communicate the tradeoffs when we’re making decisions.

- Keeping the team happy and productive
 - What is the right balance on my team of skill development, R&D, and needing to get important things done?
 - Technology and data science moves really fast, my team knows more than me!
The Idea Factory is a process we created to better align around data science project selection.

Where do our ideas come from?

How do we decide which projects to work on?

How do we manage our projects for success?

“The Idea Factory is the worst form of project prioritization, except for all the others”
Building an Idea Factory

Plans are useless, but planning is indispensable
Effective communication is key to success

Ideas come from many places. Make sure your team is talking to the rest of the organization.
Write a value calculus to define the benefits of success

Your team will benefit from a deep understanding of how they provide value to the organization and how you measure that value.

<table>
<thead>
<tr>
<th>External users</th>
<th>Internal users</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the technical and scientific improvements that will make our products better?</td>
<td>Can you build software that allows your colleagues be more efficient in delivering for clients?</td>
</tr>
<tr>
<td>Are we seeing user adoption and engagement?</td>
<td>Are we observing those efficiency gains?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Civis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could this project raise our company profile?</td>
</tr>
<tr>
<td>Did a blog post drive site views? Do we see adoption of our open source package?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Our Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is this a sufficiently difficult and interesting problem?</td>
</tr>
<tr>
<td>Is the team happy with their work and career progression?</td>
</tr>
</tbody>
</table>
Write a risk calculus to define the costs of success

Your team can help you think beyond time and materials. Understanding the risks will help you balance projects and continue to monitor for success along the way.

<table>
<thead>
<tr>
<th>Technical risk</th>
<th>Market risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does it rely on a library, language, or framework no one else uses?</td>
<td>Do we understand the problem space, the solution space, and the user needs enough to provide the value that will drive adoption?</td>
</tr>
<tr>
<td>Do you understand the quality of the data?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legal and compliance risk</th>
<th>Process risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do we have access to the data that we need? Does this meet our security requirements?</td>
<td>Does this project require coordination and alignment with another department’s roadmap?</td>
</tr>
</tbody>
</table>
Evaluate projects together to keep a balanced portfolio

Resource constraints are real, and you are going to have to make trade-offs. Keep in mind the different types of initiatives you need to deliver value today and in the future.

<table>
<thead>
<tr>
<th>Methodological research</th>
<th>Methodological development</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the next advancement in machine learning or statistics?</td>
<td>How do I make a new statistical or machine learning breakthrough usable?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical research</th>
<th>Technical development</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the tools that will enable my data science efforts in the future?</td>
<td>How can I get those tools up and running in my existing stack?</td>
</tr>
</tbody>
</table>
Running an Idea Factory

Create alignment and then let your team run wild
What your team does: the submission process

Force people to make hard choices early. Brevity can be a liberating constraint and allow your team to be really creative.

- **Prepare and submit proposals**: 1 week
- **Read each others’ proposals**: 2-7 days
- **Structured discussion around value and risk/cost**: 5-10 minutes per idea
- **Which ideas deserve discussion?**: (Optional) first-round voting (get it down to 10 ideas)
- **Risk/cost and value**: (Optional) second-round voting
- **Decision making and communication**
What makes a good project proposal, part 1

This is our template, feel free to steal shamelessly or make your own. But we do suggest having a template. It lowers the cognitive overhead associated with writing, so the focus is on the idea.

<table>
<thead>
<tr>
<th>Field</th>
<th>What it is</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposer(s)</td>
<td>Team member(s) and any collaborators from outside the data science team</td>
<td>We favor proposals with that are co-proposed by data scientists and other stakeholders</td>
</tr>
<tr>
<td>Project name</td>
<td>Need to know what to call it</td>
<td>Don't get too cute here</td>
</tr>
<tr>
<td>One-sentence description</td>
<td>A brief, non-salesy description of the project</td>
<td>If you can't describe in a sentence what you want to build, it's probably not very well-defined. This field was hugely valuable when we got 40+ ideas.</td>
</tr>
<tr>
<td>Who would use it?</td>
<td>Who are your users, and why do they care</td>
<td>User-centered ideation encourages projects that will get used. If they don't get used, what's the point?</td>
</tr>
<tr>
<td>Deliverables</td>
<td>Very concretely, what will the data scientists create?</td>
<td>Writing this down at the outset helps prevent the "lagging last 10%" problem.</td>
</tr>
<tr>
<td>Why we should do this</td>
<td>The affirmative case for doing this project--what’s the value proposition?</td>
<td>The best answers here lay out the case for doing the project in terms of agreed-upon business priorities.</td>
</tr>
</tbody>
</table>
What makes a good project proposal, part 2

One non-obvious field: proposer’s desire to be project lead, if approved. This field helps people register strong ownership of ideas, so their teammates know if an idea is free for whoever wants it vs. already has a presumed owner.

<table>
<thead>
<tr>
<th>Field</th>
<th>What it is</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated timeline</td>
<td>Rough estimate of how long it would take to build</td>
<td>For especially long or high-risk projects, break it into pieces</td>
</tr>
<tr>
<td>Resources needed</td>
<td>Resources beyond the scope of the team itself--e.g. new computing resources, or time from other teams</td>
<td>Everything will go more smoothly if people are considering these dependencies upfront</td>
</tr>
<tr>
<td>Technical scope + Risks</td>
<td>Where could this fail? Both big technical requirements and other sources of risk</td>
<td>Honesty is critical here, reviewers should be expected to dig into the risks</td>
</tr>
<tr>
<td>Project leadership</td>
<td>Does the project proposer want to be in charge of leading the project if it’s approved?</td>
<td>Help distinguish projects where the proposer feels real ownership from “cool idea for anyone who’s interested” (both are good!)</td>
</tr>
</tbody>
</table>
What makes a bad project proposal
What makes a bad project proposal

Nothing. There are no bad proposals. Only proposals that may not yet be great.

Next slide.
Crafting good proposals takes time, space, and collaboration. We added in a week long review process after all the proposals were in.

Prepare and submit proposals
- 1 week

Read each others’ proposals
- 2-7 days

Which ideas deserve discussion?
- 5-10 minutes per idea

Structured discussion around value and risk/cost

Risk/cost and value

Decision making and communication

(Optional) first-round voting (get it down to ~10 ideas)

(Optional) second-round voting
Gathering constructive feedback will make better proposals.

In every step of the process, your team is always better together. Get them thinking about ideas that they haven’t yet.

Why

The review phase ensures that every idea gets some consideration by and feedback from someone who didn’t author it. Having familiarity with many proposals will facilitate discussion later.

How

Create proposals using a tool that allows public commenting, ask people to read the proposals and offer up any questions or comments.

Pro Tip

Assign at least one reviewer to each proposal — it ensures that every proposal gets someone thinking about it and asking questions.
An aside on **psychological safety**: make a code of conduct

Encouraging the exchange of constructive feedback in a psychologically safe environment is one of the best things you can do for the dynamism and creativity of your team.
What your team does: the voting process

Voting narrows the field so you can discuss the best proposals in more detail and helps surface the views of the team to the leads and managers.

- Prepare and submit proposals
 - 1 week

- Read each others’ proposals
 - 2-7 days

- Structured discussion around value and risk/cost
 - 5-10 minutes per idea

- Which ideas deserve discussion?
 - (Optional) first-round voting (get it down to 10 ideas)
 - (Optional) second-round voting

- Risk/cost and value

- Decision making and communication
Discussion and voting capture the collective wisdom

The whole point of the exercise is to involve the team in decision-making. Voting is a quick and quantifiable way of gauging enthusiasm and prioritizing. Discussion helps inform voting.

Round 1 voting: Which ideas should advance to discussion? Approval voting

Discussion: 5-10 minutes per idea (time it)

Round 2 voting: High/low, risk/value

our actual vote counting sheet

you don’t have to get fancy
What your team does: understanding the decisions

This is a long process — it’s easy to lose momentum at the end. Don’t. Communicate the final decisions that were made and let everyone know why.

- Prepare and submit proposals
 - 1 week

- Read each others’ proposals
 - 2-7 days

- (Optional) first-round voting (get it down to 10 ideas)
 - 5-10 minutes per idea

- Structured discussion around value and risk/cost

- (Optional) second-round voting
 - Risk/cost and value

- Decision making and communication
There is no such thing as *overcommunication*

To be a good leader, you have to repeat things. If you find yourself saying the same things over and over, people may just be starting to get it.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>discussion with our team leads</td>
<td>talks to the team to motivate and explain the process</td>
<td>long-form (5+ pages) documents about what, why, how</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>example proposals</td>
<td>hours of discussion, public voting</td>
<td>private conversations</td>
</tr>
<tr>
<td>1</td>
<td>6+</td>
<td></td>
</tr>
<tr>
<td>webpage for collecting proposal submissions</td>
<td></td>
<td>talk to the department, explaining project choices</td>
</tr>
</tbody>
</table>
Reflecting on two iterations of the Idea Factory

What all this work actually produced
R&D Selected Projects and Results

What’s the payoff of all this work? A really cool portfolio of projects. Already appearing at a data science conference near you (cough cough)...

1. Predicting a particular type of transactions using a new factorization machines implementation
2. Making causal, not just correlative, attribution with digital ad data
3. Modeling customer churn with recurrent neural networks
4. Pay down tech debt on a high-traffic package
Technology and Product Roadmapping

We used a very similar model for our recent product roadmapping to great effect.

Similarities

- Diversity of opinion.
- Many different needs.
- Balancing quick wins vs. riskier long-term investments.

Differences

- Input by business unit.
- More go-to market focus.
- Product design sprints.
- Top-down vision more important.

Outcome

- Identified a strong opportunity to invest in some of our best point solutions in addition to areas of our platform as an enabling technology.
Closing thoughts

Ensuring data science has a lasting impact on the way that an organization operates takes a lot of work.

- Get everyone speaking the same language by establishing a **shared context**.
- Make sure your data science team understand the **business goals**.
- Be realistic about what you can achieve by **including the data scientists early** in your business planning processes.
- Create an environment of **psychological safety** by establishing a **code of conduct** for discussions and trying out some exercises in **participatory decision-making**.
- **Balance** your projects by taking into account multiple objectives.
THANK YOU

@multiarmbandit
cmalone@civisanalytics.com
lineardigressions.com

@jseabold
sseabold@civisanalytics.com