Machine Learned Model Quality Monitoring in Fast Data and Streaming Applications

Emre Velipasaoglu

Lightbend

Strata DATA CONFERENCE
model quality
* same data generating distribution

(Some algorithms tolerate violation of this to a certain degree.)
core problem

stream
core problem

stream

population change
core problem

stream

sensor failure
core problem

concept drift

stream
core problem

stream

emerging concept
can active learning help?
a better solution

data

feature extraction

classifier

predictions
a better solution

data

feature extraction

classifier

monitoring

predictions
a better solution

- Data
- Feature extraction
- Classifier
- Monitoring
- Predictions
a better solution

data

feature extraction

classifier

monitoring

predictions
a better solution

data

feature extraction

classifier

predictions

monitoring
a better solution

- data
 - feature extraction
 - classifier
 - predictions
 - monitoring
 - labeling
a better solution

data -> feature extraction -> classifier -> change detection -> predictions

labeling -> adaptation
monitor how?

- supervised
 - statistical process control
 - sequential analysis
 - error distribution monitoring

- unsupervised
 - clustering / novelty detection
 - feature distribution monitoring
 - model-dependent monitoring
adapt how?

explicit mechanisms:
- windowing
- weighting
- sampling

implicit mechanisms:
- pure methods
- ensemble methods
which method?
monitor how?

- supervised
 - statistical process control
 - sequential analysis
 - error distribution monitoring
- unsupervised
 - clustering / novelty detection
 - feature distribution monitoring
 - model-dependent monitoring
ML theory: samples \rightarrow errors
Drift Detection Method [DDM]

- # of errors is Binomial:

\[\mu = np_t \]

\[\sigma = \sqrt{\frac{p_t(1-p_t)}{n}} \]

- alert:

\[p_t + \sigma_t \geq p_{min} + 3\sigma_{min} \]
statistical process control

- Drift Detection Method [DDM]
 - # of errors is Binomial:
 \[\mu = np_t \]
 \[\sigma = \sqrt{\frac{p_t(1 - p_t)}{n}} \]
 - alert:
 \[p_t + \sigma_t \geq p_{min} + 3\sigma_{min} \]

- Early Drift Detection Method [EDDM]
 - distance between errors better for gradual drift
 - warn & start caching:
 \[\frac{p_t + 2\sigma_t}{p_{max} + 2\sigma_{max}} < 0.95 \]
 - alert and reset max:
 \[\frac{p_t + 2\sigma_t}{p_{max} + 2\sigma_{max}} < 0.90 \]
monitor how?

supervised

- statistical process control
- sequential analysis
- error distribution monitoring

unsupervised

- clustering / novelty detection
- feature distribution monitoring
- model-dependent monitoring
Sequential Analysis

- **Linear Four Rates (LFR)**
 - Stationary data \Rightarrow Constant contingency table

<table>
<thead>
<tr>
<th>Predicted</th>
<th>True</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN</td>
<td></td>
<td>FN</td>
</tr>
<tr>
<td>1</td>
<td>FP</td>
<td></td>
<td>TP</td>
</tr>
</tbody>
</table>
sequential analysis

- Linear Four Rates [LFR]
 - stationary data => constant contingency table
 - calculate four rates

<table>
<thead>
<tr>
<th>Predicted</th>
<th>True</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN</td>
<td>FN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FP</td>
<td>TP</td>
<td></td>
</tr>
</tbody>
</table>

\[P_{npv} = \frac{TN}{TN + FN} \]
\[P_{ppv/precision} = \frac{TP}{TP + FP} \]
\[P_{tnr/specificity} = \frac{TN}{TN + FP} \]
\[P_{tpr/recall} = \frac{TP}{TP + FN} \]
Sequential Analysis

- **Linear Four Rates [LFR]**
 - stationary data => constant contingency table
 - calculate four rates
 - incremental updates

<table>
<thead>
<tr>
<th>Predicted</th>
<th>True</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN</td>
<td>FN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FP</td>
<td>TP</td>
<td></td>
</tr>
</tbody>
</table>

- \(P_{npv} = \frac{TN}{TN + FN} \)
- \(P_{ppv/precision} = \frac{TP}{TP + FP} \)
- \(P_{inv/specificity} = \frac{TN}{TN + FP} \)
- \(P_{prv/recall} = \frac{TP}{TP + FN} \)

\[
P_{*}^{t} \leftarrow \eta_{*} P_{*}^{t-1} + (1 - \eta_{*})I_{y_{t} = \hat{y}_{t}}
\]
sequential analysis

- Linear Four Rates [LFR]
 - stationary data => constant contingency table
 - calculate four rates
 - incremental updates
 - test for change
 - Monte Carlo sampling for significance level
 - Bonferoni correction for correlated tests
 - $O(1)$
 - Better than (E)DDM for class imbalance

<table>
<thead>
<tr>
<th>Predicted</th>
<th>True</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN</td>
<td>FN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FP</td>
<td>TP</td>
<td></td>
</tr>
</tbody>
</table>

\[
P_{npv} = \frac{TN}{TN + FN} \quad P_{ppv/precision} = \frac{TP}{TP + FP}
\]

\[
P_{inv/specificity} = \frac{TN}{TN + FP} \quad P_{prep/recall} = \frac{TP}{TP + FN}
\]

\[
P_*^t \leftarrow \eta_* P_*^{t-1} + (1 - \eta_*) I_{y_t = \hat{y}_t}
\]
monitor how?

supervised

- statistical process control
- sequential analysis
- error distribution monitoring

unsupervised

- clustering / novelty detection
- feature distribution monitoring
- model-dependent monitoring
error distribution monitoring

- ADaptive WINdowing [ADWIN]
 - Consider all partitions of a window
 - Drop the last element if any
 - Efficient version $O(\log W)$
 - Data structure for windows \sim exponential histograms
 - Drop last window rather than last element

\[|\mu_0 - \mu_1| > \theta_{\text{Hoeffding}} \]
resampling

- Prediction loss over random permutations vs. ordered training data
- Parallel permutation test version available
- Still expensive
- Only method directly applicable to regression setting
- Side note: Even with finite training set, drift could be problematic if model is developed naively.
monitor how?

supervised

statistical process control
sequential analysis
error distribution monitoring

unsupervised

clustering / novelty detection
feature distribution monitoring
model-dependent monitoring
clustering / novelty detection

- OLINDDA: K-means, periodically merge unknown to known or flag
- MINAS: micro-clusters, incremental stream clustering
- DETECTNOD: Discrete Cosine Transform to estimate distances efficiently
- Woo-ensemble: Treat outliers as potential emerging class centroids
- ECSMiner: Store and use cluster summary efficiently
- GC3: Grid based clustering
clustering / novelty detection

- OLINDDA: K-means, periodically merge unknown to known or flag
- MINAS: micro-clusters, incremental stream clustering
- DETECTNOD: Discrete Cosine Transform to estimate distances efficiently
- Woo-ensemble: Treat outliers as potential emerging class centroids
- ECSMiner: Store and use cluster summary efficiently
- GC3: Grid based clustering

Curse of Dimensionality
monitor how?

- supervised
 - statistical process control
 - sequential analysis
 - error distribution monitoring

- unsupervised
 - clustering / novelty detection
 - feature distribution monitoring
 - model-dependent monitoring
Monitor individual features

Many ways to compare:
- Pearson correlation [Change of Concept - CoC]
- Hellinger distance [HDDDM] \(\sim O(DB) \)

Use PCA to reduce the number of features to track (top [PCA-1] or bottom [PCA-2] n%)
monitor how?

supervised

unsupervised

statistical process control
sequential analysis
error distribution monitoring

clustering / novelty detection
feature distribution monitoring
model-dependent monitoring
model-dependent monitoring

- Not all changes matter
- Posterior probability estimate
 - Use [A-distance] ~ generalized KS distance
 - designed to be less sensitive to irrelevant changes
model-dependent monitoring

- [Margin] distribution
 - rank statistic on density estimates for a binary representation of the data,
 - compare average margins of a linear classifier induced by the 1-norm SVM
 - based on the average zero-one or sigmoid error rate of an SVM classifier

- Generalized margin [MD3]:
 - Embed base classifier in a Random Feature Bagged Ensemble
 - Margin == high disagreement region of the ensemble
adapt how?

- explicit mechanisms
- implicit mechanisms

- windowing
- weighting
- sampling
- pure methods
- ensemble methods
explicit mechanisms for adaptation

Drop the last sub-window if threshold is exceeded. = Adaptively shrink window during drift.
explicit mechanisms for adaptation

*Adaptation goes through a similar refinement process.
adapt how?

explicit mechanisms

implicit mechanisms

windowing

weighting

sampling

pure methods

ensemble methods
explicit mechanisms for adaptation

Biased Reservoir Sampling

bias: \(f(r, t) = e^{-\lambda(t-r)} \)

capacity: \(N = \frac{1}{\lambda} \)

overwrite / exchange randomly w/ Prob{ %full } or append
adapt how?

- explicit mechanisms
 - windowing
 - weighting
 - sampling

- implicit mechanisms

- pure methods
 - ensemble methods
implicit mechanisms for adaptation

Ensemble Based Adaptation

ensemble 1

ensemble (N-1)

ensemble N

train new member
implicit mechanisms for adaptation

Ensemble Based Adaptation

- ensemble 1
 - retire / decay

- ensemble (N-1)

- ensemble N
 - train new member
implicit mechanisms for adaptation

Ensemble Based Adaptation

- **ensemble 1**
 - retire / decay

- **ensemble (N-1)**
 - recurring

- **ensemble N**
 - train new member
Ensemble Based Adaptation

- Online NonStationary boosting [ONSboost]
- NonStationary Random Forests [NSRF]
- Dynamic Weighted Majority [DWM]
- Learn++ for NonStationary Environments [Learn++.NSE]
<table>
<thead>
<tr>
<th>Method</th>
<th>Efficiency</th>
<th>Pros</th>
<th>Cons</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDM/EDDM</td>
<td>$O(1)$</td>
<td>no data stored</td>
<td>label cost</td>
<td>sampling necessary in case of fast data,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>false alarms</td>
<td>microservices architecture ideal</td>
</tr>
<tr>
<td>LFR</td>
<td>$O(1)$</td>
<td>class imbalance OK</td>
<td>label cost</td>
<td></td>
</tr>
<tr>
<td>ADWIN</td>
<td>$O(\log W)$</td>
<td>better change</td>
<td>label cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>localization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIT</td>
<td>$O(\log W)$</td>
<td>no labels required</td>
<td>only for abrupt changes</td>
<td>best localization</td>
</tr>
<tr>
<td>Method</td>
<td>Efficiency</td>
<td>Pros</td>
<td>Cons</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ECSMiner / GC3</td>
<td>$O(W^2 / k)$</td>
<td>emerging concepts</td>
<td>clusterable drift only</td>
<td>use if emerging concepts expected</td>
</tr>
<tr>
<td></td>
<td>$O(G \log C)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDDDM</td>
<td>$O(DB)$</td>
<td>no labels</td>
<td>not for population drift or class imbalance</td>
<td>better when combined with PCA</td>
</tr>
<tr>
<td>A-distance</td>
<td>$O(\log W)$</td>
<td>no labels</td>
<td>less false positives compared to HDDDM</td>
<td>good choice for unsupervised</td>
</tr>
<tr>
<td>Margin / MD3</td>
<td>Learning, detection, adaptation bundled</td>
<td>reduced false alarms</td>
<td>must use feature bagged ensembles</td>
<td>best choice but must commit to using the specific machine learning algorithms</td>
</tr>
<tr>
<td>Ensemble methods</td>
<td></td>
<td>recurring concepts</td>
<td>large batches</td>
<td></td>
</tr>
</tbody>
</table>
References

https://gist.github.com/emrev12/0d75dc2d6c3e80012d10a82712b8ced0
thank you
	emre.velipasaoglu@Lightbend.com