
Implementing an Event-Driven Microservices

Architecture in a Functional Language

NIKHIL BARTHWAL

SENIOR ENGINEER, JET.COM

1

Background – Jet.com

 Launched in July 2015

Dynamic pricing engine (2 m calculations/sec)

8 Million customers

25K orders daily

Have 15 million SKU’s in inventory

Acquired by Walmart for $3.3 Billion in Sept 2016!

2

Technology Stack

Runs on Microsoft Azure

Uses .Net framework

Use a mix of Kafka, Redis, Splunk, New Relic, ...

Backend in F#: Functional Language for the .NET

platform!

3

Architecture

Uses Domain Driven Design (DDD) to architect services

Event-Driven Architecture

Event Sourcing

Microservices based Architecture

4

Domain Driven Design (DDD)

Ubiquitous Language

Bounded Contexts

Aggregates

5

DDD: Bounded Contexts

6

DDD: CQRS Design Pattern

CustomerService:

 Customer GetCustomer(CustomerId)

 CustomerSet GetCustomersWithName(Name)

 CustomerSet GetPreferredCustomers()

 void ChangeLocale(CustomerId, NewLocale)

 void CreateCustomer(Customer)

 void EditCustomerDetails(CustomerDetails)

CustomerReadService:

 Customer GetCustomer(CustomerId)

 CustomerSet GetCustomersWithName(Name)

 CustomerSet GetPreferredCustomers()

CustomerWriteService:

 void ChangeLocale(CustomerId, NewLocale)

 void CreateCustomer(Customer)

 void EditCustomerDetails(CustomerDetails)

7

Command Query Responsibility Segregation (CQRS)

Source: http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

DDD: Architecture Layers

8

Infrastructure Layer

Domain Layer

Application Layer

User Interface

Domain Layer (Bulk of code):

 Value Objects are Immutable

 Modeled by F# Discriminated unions

 Attached member functions

(Not Anemic Domain models)

Event Driven Architecture

Event occurs when a change happens in system

All listeners get notified of the event, some take

action

Highly distributed/loosely coupled architecture

Often used for asynchronous flows of work/information

9

Event Sourcing

Modeling state changes as sequence of events

Storing the event that could trigger the state change

Enables rolling back to particular time in history

10

Different applications can process same event

but create a different view

Microservice

Microservices are small, autonomous services

that work together.

Small and Focused on Doing One Thing Well

Follow the Single Responsibility Principle

11

Microservice Architecture

Approach to developing application as set of
small services

Each Microservice runs in its own process

Communicates with lightweight mechanisms

We have 1000+ in production…

12

Advantages

 Independent Releasability: Better Scaling

 Technology Heterogeneity

Resilience

Ease of Migration

13

Microservices Deployment Pattern

Request/Response

(synchronous)

Event-Driven

(asynchronous)

Apache Kafka (Kafunk as client)

14

N-Tier Microservices

15

Tier-3: Little to No impact for Customer

Tier-2: Impacting Customers indirectly

Tier-1: Directly Customer facing Request/Response

Event-Driven

Microservice: A functional view

Service

(f)

Input event

(x)

Output response

(y)

Mathematical representation: y=f(x)

Service

(f)

Input event

(x)

Output response

(y)

Mathematical representation: y, sout=f(x, sinp)

DB

Pure Service (Majority)
No side effects except Logging

Impure service (Minority)

Side effects like I/O to DB etc.

16

Why did we not use OOP?: History

17

 40’s to 50’s: Early machines based on von Neumann architecture

 50’s to 70’s: Early (Impressive) Programming languages - C & Fortran

 80's: OOP was an extension of imperative paradigm with new

concepts: encapsulation and polymorphism

 90's: Internet with problems of Portability & Security

 90’s - 2000's: Managed languages like Java & C#

OOP became Dominant paradigm!

Why did we not use OOP?

Arguments Counter-Arguments

OOP models application as objects with states Microservices mostly don’t have states

OOP extends imperative with encapsulation and

polymorphism

Imperative was designed for Van-Neumann style

hardware
Microservices hosted on the cloud don’t interact

with hardware directly

Being dominant paradigm, OOP Languages like

Java/C# have very good ecosystem

Languages like F#/Scala can inter-operate

with C#/Java seamlessly

18

Modelling a Service using FP

Services world FP Construct

Service Functions

Immutability

Events Modelling

Events are immutable

Algebraic Data Type

FP captures the behavior of service architecture very naturally!

(Mostly) Stateless service (Predominantly) Pure code

19

F#OCaml C#/.NET

Similar core language Similar object model

F#: A Functional Language for .NET

Declarative
Style

Immutability

Functions as
building blocksA statically typed Managed Functional

Language for the .NET platform!

20

Implementation: Example in F#

Define Input type Define Output type

Write a function to convert input to output…

21

Asynchronous workflows

Stock service sends async request to ship order,

And returns acknowledgment synchronously

let RecieveOrder order =

async {

do! ShipOrder order

return [UpdateInventory order ;

ReturnAcknowledgment order]

}

22

Static Analysis of F# code

Procedure

 Define a set of Anti-Patterns

 Static Analyzer parses F# code into AST

 Analyzer detects Anti-Patterns in AST

 Bundle into SonarQube plugin

Features in work …

 Provides “pre-commit” testing

 Dashboard to tract violations

 Integration into CI/CD Pipeline

(Mostly) Pure functions

Easy to analyze and reason about

Static Analysis is effective way to detect issues in code

23

Security for F# code

Extended the Static Analyzer to:Fact: F# is not a mainstream language

Problem: Lack of 3rd party security tools

Solution: Build your own!

Security initiatives:

 Identifying security vulnerabilities

 Weakness in applications source code

 Integrate security related tooling into the CI/CD pipeline

 Work on "pre-commit" testing of the code within the IDE

 Build and Maintain tools for security analysis

24

Benefits of using F#

Scalability

Productivity

Code Correctness

25

Benefits of using F#: Scalability

 Infinitely scalable in terms of massive parallelism out-

of-the box

 Immutability → Not to worry about mutex/lock/race

condition

Allows you to scale from 30K to 2.5M easily

26

Benefits of using F#: Productivity

F# code is much more concise than say C#

Conciseness & clarity result in lower maintenance

costs

Simpler code means reduced ramp-up for new devs

27

Productivity in F#: Example

C# project F# project

Useful Lines 4610 (50%) 1436 (84%)

Null Checks 195 (2%) 4 (0.003%)

Blank Lines 1386 (15%) 94 (6%)

Brace Lines 2686 (29%) 11 (1%)

Comment Lines 290 (3%) 164 (10%)

Total 9167 1709

Source: http://fpbridge.co.uk/why-fsharp.html

F# code is 5x shorter than C#

28

Benefits of using F#: Code Correctness

Strict typing makes writing correct code easy

 Immutability makes code more predictable

Exhaustive pattern matching traps errors at compile

time.

 Type system makes illegal states unpresentable

29

Testing Microservices (Request/Response)

WebServer

ServiceA

ServiceC

ServiceD

ServiceB ServiceE

DB

DB

Pure Services:

• Being pure, behavior is very predictable

• Can be tested exhaustively!

Impure Services:

• Unpredictable, due to external state

• Certain services can’t be tested exhaustively

(e.g. Payment gateway)!

30

Testing Microservices (Event Driven)

Original Architecture Test Setup

Injects test events into

the message bus

Reads response events

from the message bus

31

Tracability: X-Ray platform

Table

Storage

Azure

Search

API

X-Ray

32

SLA Monitoring: Pulse

Service A

Service A

Service A N
e

w
 R

e
lic

 (
M

o
n

it
o

ri
n

g
)Metrics for Service A Storage

(HDFS/TS DB)

Dashboard

(Looker/Graphana)

Metrics for Service B

Metrics for Service C

Pulse

service

Query
Data

Rules to detect SLA Violations are computed in the query to pull data

Pull Data Push Data

33

Chaos Engineering: Definition

“Chaos Engineering is the discipline of

experimenting on a distributed system in order to

build confidence in the system’s capability to

withstand turbulent conditions in production”

Source: http://principlesofchaos.org

34

Chaos Engineering: In Practice …

Automate Experiments to run Continuously in Production

Start by defining ‘steady state’ that indicates normal

behavior

 Introduce “chaos”, events that model disruptions

Monitor the effects on system & its recovery

35

Distributed Scheduler: Nomad

Flexible, Scalable, Multi-Region Aware scheduler

 Tool for managing a cluster of machines & running

applications on them

Declarative style, abstracts away machines & locations

36

Conclusion

Very few startups scaled to Jet’s size in same time

Scalability & Productivity due to F#

Sound architecture, Unchanged since start

37

38

Questions?

Nikhil Barthwal

Senior Engineer, Jet.com

@nikhilbarthwal

nikhilbarthwal@yahoo.com

www.nikhilbarthwal.com

