
Implementing an Event-Driven Microservices

Architecture in a Functional Language

NIKHIL BARTHWAL

SENIOR ENGINEER, JET.COM

1

Background – Jet.com

 Launched in July 2015

Dynamic pricing engine (2 m calculations/sec)

8 Million customers

25K orders daily

Have 15 million SKU’s in inventory

Acquired by Walmart for $3.3 Billion in Sept 2016!

2

Technology Stack

Runs on Microsoft Azure

Uses .Net framework

Use a mix of Kafka, Redis, Splunk, New Relic, ...

Backend in F#: Functional Language for the .NET

platform!

3

Architecture

Uses Domain Driven Design (DDD) to architect services

Event-Driven Architecture

Event Sourcing

Microservices based Architecture

4

Domain Driven Design (DDD)

Ubiquitous Language

Bounded Contexts

Aggregates

5

DDD: Bounded Contexts

6

DDD: CQRS Design Pattern

CustomerService:

 Customer GetCustomer(CustomerId)

 CustomerSet GetCustomersWithName(Name)

 CustomerSet GetPreferredCustomers()

 void ChangeLocale(CustomerId, NewLocale)

 void CreateCustomer(Customer)

 void EditCustomerDetails(CustomerDetails)

CustomerReadService:

 Customer GetCustomer(CustomerId)

 CustomerSet GetCustomersWithName(Name)

 CustomerSet GetPreferredCustomers()

CustomerWriteService:

 void ChangeLocale(CustomerId, NewLocale)

 void CreateCustomer(Customer)

 void EditCustomerDetails(CustomerDetails)

7

Command Query Responsibility Segregation (CQRS)

Source: http://codebetter.com/gregyoung/2010/02/16/cqrs-task-based-uis-event-sourcing-agh/

DDD: Architecture Layers

8

Infrastructure Layer

Domain Layer

Application Layer

User Interface

Domain Layer (Bulk of code):

 Value Objects are Immutable

 Modeled by F# Discriminated unions

 Attached member functions

(Not Anemic Domain models)

Event Driven Architecture

Event occurs when a change happens in system

All listeners get notified of the event, some take

action

Highly distributed/loosely coupled architecture

Often used for asynchronous flows of work/information

9

Event Sourcing

Modeling state changes as sequence of events

Storing the event that could trigger the state change

Enables rolling back to particular time in history

10

Different applications can process same event

but create a different view

Microservice

Microservices are small, autonomous services

that work together.

Small and Focused on Doing One Thing Well

Follow the Single Responsibility Principle

11

Microservice Architecture

Approach to developing application as set of
small services

Each Microservice runs in its own process

Communicates with lightweight mechanisms

We have 1000+ in production…

12

Advantages

 Independent Releasability: Better Scaling

 Technology Heterogeneity

Resilience

Ease of Migration

13

Microservices Deployment Pattern

Request/Response

(synchronous)

Event-Driven

(asynchronous)

Apache Kafka (Kafunk as client)

14

N-Tier Microservices

15

Tier-3: Little to No impact for Customer

Tier-2: Impacting Customers indirectly

Tier-1: Directly Customer facing Request/Response

Event-Driven

Microservice: A functional view

Service

(f)

Input event

(x)

Output response

(y)

Mathematical representation: y=f(x)

Service

(f)

Input event

(x)

Output response

(y)

Mathematical representation: y, sout=f(x, sinp)

DB

Pure Service (Majority)
No side effects except Logging

Impure service (Minority)

Side effects like I/O to DB etc.

16

Why did we not use OOP?: History

17

 40’s to 50’s: Early machines based on von Neumann architecture

 50’s to 70’s: Early (Impressive) Programming languages - C & Fortran

 80's: OOP was an extension of imperative paradigm with new

concepts: encapsulation and polymorphism

 90's: Internet with problems of Portability & Security

 90’s - 2000's: Managed languages like Java & C#

OOP became Dominant paradigm!

Why did we not use OOP?

Arguments Counter-Arguments

OOP models application as objects with states Microservices mostly don’t have states

OOP extends imperative with encapsulation and

polymorphism

Imperative was designed for Van-Neumann style

hardware
Microservices hosted on the cloud don’t interact

with hardware directly

Being dominant paradigm, OOP Languages like

Java/C# have very good ecosystem

Languages like F#/Scala can inter-operate

with C#/Java seamlessly

18

Modelling a Service using FP

Services world FP Construct

Service Functions

Immutability

Events Modelling

Events are immutable

Algebraic Data Type

FP captures the behavior of service architecture very naturally!

(Mostly) Stateless service (Predominantly) Pure code

19

F#OCaml C#/.NET

Similar core language Similar object model

F#: A Functional Language for .NET

Declarative
Style

Immutability

Functions as
building blocksA statically typed Managed Functional

Language for the .NET platform!

20

Implementation: Example in F#

Define Input type Define Output type

Write a function to convert input to output…

21

Asynchronous workflows

Stock service sends async request to ship order,

And returns acknowledgment synchronously

let RecieveOrder order =

async {

do! ShipOrder order

return [UpdateInventory order ;

ReturnAcknowledgment order]

}

22

Static Analysis of F# code

Procedure

 Define a set of Anti-Patterns

 Static Analyzer parses F# code into AST

 Analyzer detects Anti-Patterns in AST

 Bundle into SonarQube plugin

Features in work …

 Provides “pre-commit” testing

 Dashboard to tract violations

 Integration into CI/CD Pipeline

(Mostly) Pure functions

Easy to analyze and reason about

Static Analysis is effective way to detect issues in code

23

Security for F# code

Extended the Static Analyzer to:Fact: F# is not a mainstream language

Problem: Lack of 3rd party security tools

Solution: Build your own!

Security initiatives:

 Identifying security vulnerabilities

 Weakness in applications source code

 Integrate security related tooling into the CI/CD pipeline

 Work on "pre-commit" testing of the code within the IDE

 Build and Maintain tools for security analysis

24

Benefits of using F#

Scalability

Productivity

Code Correctness

25

Benefits of using F#: Scalability

 Infinitely scalable in terms of massive parallelism out-

of-the box

 Immutability → Not to worry about mutex/lock/race

condition

Allows you to scale from 30K to 2.5M easily

26

Benefits of using F#: Productivity

F# code is much more concise than say C#

Conciseness & clarity result in lower maintenance

costs

Simpler code means reduced ramp-up for new devs

27

Productivity in F#: Example

C# project F# project

Useful Lines 4610 (50%) 1436 (84%)

Null Checks 195 (2%) 4 (0.003%)

Blank Lines 1386 (15%) 94 (6%)

Brace Lines 2686 (29%) 11 (1%)

Comment Lines 290 (3%) 164 (10%)

Total 9167 1709

Source: http://fpbridge.co.uk/why-fsharp.html

F# code is 5x shorter than C#

28

Benefits of using F#: Code Correctness

Strict typing makes writing correct code easy

 Immutability makes code more predictable

Exhaustive pattern matching traps errors at compile

time.

 Type system makes illegal states unpresentable

29

Testing Microservices (Request/Response)

WebServer

ServiceA

ServiceC

ServiceD

ServiceB ServiceE

DB

DB

Pure Services:

• Being pure, behavior is very predictable

• Can be tested exhaustively!

Impure Services:

• Unpredictable, due to external state

• Certain services can’t be tested exhaustively

(e.g. Payment gateway)!

30

Testing Microservices (Event Driven)

Original Architecture Test Setup

Injects test events into

the message bus

Reads response events

from the message bus

31

Tracability: X-Ray platform

Table

Storage

Azure

Search

API

X-Ray

32

SLA Monitoring: Pulse

Service A

Service A

Service A N
e

w
 R

e
lic

 (
M

o
n

it
o

ri
n

g
)Metrics for Service A Storage

(HDFS/TS DB)

Dashboard

(Looker/Graphana)

Metrics for Service B

Metrics for Service C

Pulse

service

Query
Data

Rules to detect SLA Violations are computed in the query to pull data

Pull Data Push Data

33

Chaos Engineering: Definition

“Chaos Engineering is the discipline of

experimenting on a distributed system in order to

build confidence in the system’s capability to

withstand turbulent conditions in production”

Source: http://principlesofchaos.org

34

Chaos Engineering: In Practice …

Automate Experiments to run Continuously in Production

Start by defining ‘steady state’ that indicates normal

behavior

 Introduce “chaos”, events that model disruptions

Monitor the effects on system & its recovery

35

Distributed Scheduler: Nomad

Flexible, Scalable, Multi-Region Aware scheduler

 Tool for managing a cluster of machines & running

applications on them

Declarative style, abstracts away machines & locations

36

Conclusion

Very few startups scaled to Jet’s size in same time

Scalability & Productivity due to F#

Sound architecture, Unchanged since start

37

38

Questions?

Nikhil Barthwal

Senior Engineer, Jet.com

@nikhilbarthwal

nikhilbarthwal@yahoo.com

www.nikhilbarthwal.com

