
Architecture
Pa!erns
(Beyond REST)

1



Download and Read Along

http://bit.ly/nygard-ldn-2017-cards

2



Big Ball of Mud

• Big, ugly systems emerge from throwaway 
code

• Well-defined architectures subject to 
structural erosion

Context

“Shantytowns are squalid, sprawling slums. Everyone seems to agree they are a 
bad idea, but forces conspire to promote their emergence anyway. What is it 
that they are doing right?

Shantytowns are usually built from common, inexpensive materials and simple 
tools. Shantytowns can be built using relatively unskilled labor. Even though 
the labor force is "unskilled" in the customary sense, the construction and 
maintenance of this sort of housing can be quite labor intensive. There is little 
specialization. Each housing unit is constructed and maintained primarily by its 
inhabitants, and each inhabitant must be a jack of all the necessary trades.”

— Brian Foote and Joseph Yoder, Pattern Languages of Program Design 4

Discussion

⁃ Time - insufficient
⁃ Cost - pressure to minimize
⁃ Experience & Skill - may be insufficient
⁃ Visibility - problems can grow unseen
⁃ Accidental complexity
⁃ Frequent change without refactoring

You need to deliver quality software on time, 
and under budget.

Forces

Aliases: Shantytown, Spaghetti Code
See also: “Worse is Better”, Richard Gabriel

Therefore, focus first on features and functionality, then 
focus on architecture and performance.

http://www.laputan.org/mud/mud.html#BigBallOfMud

Question: Is this just cynicism? Is Big Ball
of Mud an antipattern?

PLoPD 4

3



Blackboard

An immature domain in which no closed approach 
to a solution is known or feasible.

Context
Independent programs cooperate indirectly by taking data from or placing 
data into a shared repository, called the blackboard. A program can start 
running once the input it needs appears on the blackboard. When it 
completes, it places its result onto the blackboard.

The processors work on data at different (usually increasing) levels of 
abstraction.

Solution

⁃ Complete search of solution space is not 
feasible

⁃ May need to experiment with different 
algorithms

⁃ Different algorithms partially solve 
problems.

⁃ Input, intermediate, and final results have 
different representations.

⁃ An algorithm may use (but not consume) 
results of other algorithms.

⁃ There exists potential for parallelism.

Forces

POSA 1

Knowledge Sources

algo 1 algo 2

controllerblackboard

algo 3

looks for result

invokes

Question: In what other contexts would you apply the Blackboard pattern?
4



Broker

Distributed, heterogeneous systems with 
independent components.

Context

⁃ Introduce a broker between clients and servers.
⁃ Services register themselves with the broker.
⁃ Proxies and bridges may help cross network types.
⁃ Client proxy presents a function-call interface over remote calls.

See also: Peter Deutsch’s “Fallacies of Distributed Computing”

Solution

⁃ Need to communicate across process 
boundaries.

⁃ Possibly heterogeneous network or 
transport.

⁃ Desire for transparent remote access.
⁃ Run-time replacement, exchange, or 

substitution of components.
⁃ Architecture should hide implementation 

details from users.

Forces

POSA 1

Server 
process

Client 
process

brokerclient-side
proxy

client

calls

server-side
proxy

service

Question: Is this an antipattern?
5



Components and Glue

Components that can be used and reused in 
different combinations.

Context

Some long-lived systems use this pattern:
⁃ Visual Basic (VB/VBA and controls)
⁃ Delphi
⁃ Emacs

Some new architectures are instances.
⁃ Node API over microservices
⁃ AWS Lambda

Discussion

⁃ Component authors are separate from the 
assemblers

⁃ End-user programming may be present
⁃ Scripts may appear or disappear at any time
⁃ Components may be substituted or 

intermediated.
⁃ Components may be written in different 

languages than the glue.
⁃ Components support dynamic interfaces 

(usually with introspection or discovery)
⁃ Components are not “aware” of their 

consumers

Forces

ancient

component 1

script 1 script N

component 2 component 3

…

Question: How does this differ from a plugin architecture?
Consider: Where do the scripts execute?

6



Dispatcher/Worker

Partitioning work into semantically identical sub-
tasks.

Context

⁃ The dispatcher may have the same API as the workers, to allow 
substitution or recursive task breakdown.

⁃ If running in many processes, fault tolerance is a concern.
⁃ Some tasks parallelize easily, others require additional processing to 

combine the results.
⁃ Workers may be permanent, ephemeral, or drawn from a pool.

Discussion

⁃ Clients should not be aware that the whole 
body of work was subdivided.

⁃ Sub-tasks may need to be coordinated, 
depending on the algorithm.

⁃ The means of partitioning work and the task 
granularity should not affect the client or the 
processors.

Forces

POSA 1

Aliases: Master/slave, Manager/worker.
Examples: Fork-join, Map/Reduce, GPUs

worker

worker

dispatcherclient

worker

submit work

return results

7



Event stream/CQRS

Scalable distributed systems with many writers

Context

Segregate operations that read data from operations that update data by using 
separate interfaces.
Reads and writes may operate on different schemas.
A processor applies writes to the permanent record.
Event streams may be replayed speculatively or as a recovery strategy.
Uniform interface for GUI, admin, and API updates

https://msdn.microsoft.com/en-us/library/dn568103.aspx

Solution

Queries and updates operate on the same entities 
in the same datastore.
Relational DBMSes exhibit locking and variable 
performance in these cases.
Read scaling and write scaling are rivalrous
Access control can be difficult if frameworks 
expose objects with both read and write 
capabilities

Forces

MSDN Arch

CQRS = “Command-Query Responsibility Separation”

command
processor

UI

command

read 
replica

UI

event
stream

API

8



Layers

A large system that requires decomposition.
Mix of high-level and low-level concerns
Several operations are at the same level of 
abstraction

Context
Therefore, structure your system into an appropriate number of layers and 
place them “on top” of each other.

— Buschmann, et. al., Pattern Oriented Software Architecture, Vol 1.

Solution

⁃ Late changes should have limited ripple 
effect

⁃ Interfaces should be stable, may be 
standardized

⁃ Parts should be interchangeable
⁃ Other systems may reuse lower layers
⁃ Responsibilities should be grouped for 

comprehension and maintainability
⁃ Further decomposition is needed for team 

structure and design.

Forces

Layer 1

Layer 2

Layer 3 3.1 3.2 3.3

1.1 1.2 1.3

2.1 2.2

«uses»

Related: Microkernel, Virtual Machine
Examples: TCP stack, MVC

Question: What makes a good or bad 
implementation of Layers?

POSA 1

9



Microkernel

Developing several applications that use similar 
APIs on top of the same core functionality.

Context

Encapsulate fundamental platform services in a microkernel:
⁃ Mediates communication between services
⁃ Manages systemwide resources
⁃ Offers APIs to access its functionality

Internal servers provide core functions, but outside the process space of the 
microkernel

External servers provide functionality to clients. Clients locate external servers 
via the microkernel.

Solution

⁃ Application must cope with continuous 
hardware and software evolution.

⁃ Applications must support different but 
similar application platforms.

⁃ Platform should be portable, extensible, and 
adaptable to allow integration of new 
technology.

Forces

POSA 1

microkerneladapter

client

calls service

external
server

internal
server

activates

external
resource

underlying
resource

Discussion: What does this look like at datacenter scale?
10



Pipes and Filters
Context

Divide task into separate processing stages. Connect them sequentially: the 
output of one stage is the input to the next. A filter consumes and delivers data 
incrementally. A data source supplies the initial input, while a data sink 
consumes the final output. The data source, filters, and data sink are connected 
via pipes. The assembly is a processing pipeline. Some external entity 
constructs the pipeline.

Solution

⁃ Data stream processing which naturally 
subdivides into stages

⁃ May want to recombine stages
⁃ Non-adjacent stages don’t share information
⁃ May desire different stages to be on 

different processors

Forces

Processing data streams

POSA 1

Pipeline

stage 1 stage 2 stage 3source sink

Example: Unix pipes, Apache Spark

Question: What weaknesses do you see in pipes&filters?
How do you decide between push and pull data flow?

11



Proxy

Client needs to access services. Direct access is 
possible, but not desired.

Context

Introduce a proxy that supports the same interface as the server.
The proxy may enforce access control, caching, or other pre- and post-
processing on requests.

Types of proxy:
⁃ Remote proxy
⁃ Protection proxy
⁃ Cache proxy
⁃ Synchronization
⁃ Counting
⁃ Virtual
⁃ Firewall

Solution

⁃ Security requirements need enforcement
⁃ Performance under direct access is 

insufficient
⁃ Access to the provider should be 

transparent
⁃ Remote communication may or may not be 

involved

Forces

pattern origin

proxyclient service

Question: How does this differ from broker? 12


