Conversational Al at Large Scale

Yishay Carmiel

Customer Experience is the New Competitive Battlefield

CEOs' Five-Year Investment Intention Toward a Range of Modern Technology-Enabled Capabilities

88%

of organizations surveyed plan to increase customer experience technology investment
-Gartner

89%

of marketing leaders expect to compete primarily on the basis of customer experience as compared with 36% four years ago.

-Gartner

Customer Experience in the Contact Center

In contact centers today...

22 million agents

>75% of the interactions are still voice

100 hours/month of talk time

19.8B hours of conversation/year

Customer Experience in the Contact Center

And yet, the capabilities for optimizing customer experience on the voice channel are...

Inadequate Imprecise Unresponsive Poorly integrated Bureaucratic Complicated Dumb

Prevalent View | Man to Machine Al

Spoken Conversational AI

Passive vs. Active System

Passive

- Offline analysis
- The system does not intervene during the conversation
- Uses closed conversations as input
- Can work in batch mode, allows a wider range of algorithms
- Great for identifying trends

VS

Active

- Online analysis
- The system provides insights and recommendations to participants of the conversation or even takes action in real-time
- Uses an ongoing conversation as input
- Online, real-time algorithms

Macro vs. Micro System

Micro

- Deals with a single interaction (one phone call)
- Often the algorithms must be more accurate because their output is directly interpreted (i.e. in call summarization)

VS

Macro

- Deals with a set of interactions (a million phone calls)
- Aggregates facts extracted from multiple interactions into global insights
- Leverages the rule of big numbers to go beyond imperfect results in isolated cases. Algorithms are designed for large datasets

How do we classify the use case?

The use case examples matrix

	Passive	Active	
Micro	 Conversation summarization Meta-data extraction Automatic note-taking 	Smart AI assistants with dynamic recommendations from knowledge bases.	
Macro	Sentiment analysis for all customers from NYC	 Identifying trends Causes of negative sentiment Outlier detection 	

Spoken Conversation Al

The challenges

1,000,000

Analyzing 1,000,000h/day

Fast & Accurate

Speaker Verification system

Speech Recognition System

Signal Level

- Extracting only speech segments
- Feature Extraction
- User/Environment adaptation
- <u>Deep Learning</u> to generate features

Acoustic Level

- Classification of the different sounds
- Adding contextual information on top of the sounds
- Using <u>Deep Learning</u> to do acoustic classifications

Language Level

- Combining sounds into words
- Combining words into sentences
- Using <u>Deep Learning</u> to generate the different models

Impact of Deep Learning on Speech Recognition

Year	SWBD ERR	Relative Improvement	Overall Improved
2008	23.6		
2009	23.6		
2010	23.6		
2011	18.7	20.76271186	
2012	16.1	13.90374332	
2013	13.4	16.77018634	
2014	10.7	20.14925373	
2015	8	25.23364486	
2016	5.9	26.25	75
*2017	5.5	6.779661017	76.69491525

Speech Recognition is Starting to Work

Signal Level Analysis – Recent Advances

Acoustic and Language Level Analysis – Recent Advances

Is 1,000,000h/day A Realistic Number?

- Yes!
- Only in the contact centers there are millions of representatives
- 500,000h/day means analyzing ~60,000 representatives' conversations a day
- Actually 500,000h of conversations is bigger than 1,000,000h of speech (assuming that at least 2 people are interacting)

Is 1,000,000h/day A Big Number?

- Yes!
- 1h of speech in standard quality is almost 60MB

- 1,000,000h of speech is 60TB a day
- This means applying state of the art deep learning models to 18PB/Year!

1,000,000 hours/day in \$\$\$

State of the art.

Real Time Algorithmic Scalability • Lets assume the agents take We need state of the art Assuming we use the TDNN calls for 10h every working day. model performance • This means processing 100,000h • BLSTM network is good but • Need > 200,000 cores! per hour. slow - x0.25 real time on a • >\$40M in HW cost single core • 100,000 real time conversations • > \$20M/year AWS prices A slightly worse TDNN 25M parameters achieves 0.5 real time performance on a single core

What Can We do?

Three key points for optimization and acceleration

1. Algorithm	 Frame Subsampling: New methods for reducing the search space. Network Optimization: Parameters reduction and different topologies. Both for the acoustic model and language model 	
2. Reducing Data Analysis	Better Speech Extraction models – DNN Methods Reducing Search Space by optimizing LM and lexicon	
3. HPC Methods	Acceleration using GPU's, various optimization techniques from the HPC space.	

Frame Sub-sampling

"Purely sequence-trained neural networks for ASR based on lattice-free MMI" D. Povey et al

Result of acceleration by a factor of x3 - x9

Speech Extracted Algorithm

"MUSAN: A Music, Speech, and Noise Corpus" D. Snyder et al.

VAD (Voice Activity Detection) requires less CPU then Speech Recognition

We use machine learning to classify each frame – Noise, Speech, Music, Silence. Classifier can be GMM or DNN

Algorithms are either time domain or frequency domain based. The advanced ones use statistical signal processing techniques

Using temporal segmentation mechanism to make decision

Did We Do Better?

- Yes!
- 1 Accelerated the performance by 35X
- . As a results HW and Investment costs are down by 35X

Transcription Trade offs

Speaker Verification

- Financial institutions lose \$10B year due to call fraud
- Verify if the person who talks is actually the user
- Prevents fraud both for users and agents
- Save a lot of time for the agent and also improves the customer experience.
- Should be text independent

What is the difference between theory and practice

- We need to minimize the time it takes to verify a person
- Anything above 30s is not relevant
- Different noises within the call
- Confidence measures, how sure are we about the hypothesis.

Proposed Solution i-vector system

- Using an i-vector system
- i-vectors are low dimensional speech representation models
- This is state of the art for most speaker verification methods
- Data was very noisy, so we developed a music and noise detection algorithm (MUSAN)
- Developed an online system

Reducing the verification time

- For practical applications reducing the verification time is crucial
- An i-vector is extracted at each time step
- Setup a confidence measure if to move forward or setup a decision
- Results:
 - 2% EER 98% accuracy
 - Average verification time 4.5s
 - Median time 2.5s

Moving Forward – Speaker Embedding's

"Deep Neural Network-based Speaker Embedding's for End-to-end Speaker Verification" D. Snyder et al.

- Created an embedded mechanism
- Objective aim maximize same speaker, minimize different speakers
- Enrollment utterance(s) are mapped to embedding's x_enroll
- Test utterances is mapped to embedding x_test
- Pairs of embedding's are scored using a distance metric L(x, y)

The importance of large dataset

- NN for speaker embedding's requite lots of data
- We evaluated it on a dataset of 250,000 unique anonymized users
- NN converge and give better results the more data we have.
- On short segments speaker embedding's outperforms i-vector

Fused System and results

- We saw NN system and i-vector system errors are different.
- We created a fused system
- Combining system reduced EER by 30-40%
- Average time 2.5s Median time 1s
- 2% EER

Operating at Scale

Caller Verification

Al Productivity

Algorithms

Build better algorithms using machine learning and deep learning models

Data

Use dedicated data to build better models, especially data driven ones (machine learning)

Al Productivity

Algorithms

Build better algorithms using machine learning and deep learning models

Data

Use dedicated data to build better models, especially data driven ones (machine learning)

Real Time

Optimize algorithms, SW and performance to minimize the latency

AI Productivity

Algorithms

Build better algorithms using machine learning and deep learning models

Data

Use dedicated data to build better models, especially data driven ones (machine learning)

Real Time

Optimize algorithms, SW and performance to minimize the latency

Scale

Use clusters, GPU's, parallel algorithms, HPC, micro-services to make sure solution is scalable.

Product

Wrap everything into a product ready solution, product managing and offering, make sure everything is working from DevOps perspective

