
The	dplyr Package	
for	Spark

Aimee	Gott
agott@mango-solutions.com

Overview

• The	Data
• Connect	&	Read
• The	Core	dplyr Functions
• SQL	Functions,	Joins	and	Sampling	Data
• Save	and	Disconnect	

Airlines	Data

• Arrival	and	departure	
details	for	all	commercial	
flights	in	US	between	
October	1987	and	April	
2008.

• 120,000,000	records.	12	
GB

• stat-
computing.org/dataexpo/
2009/

Connect	&	Read

Connecting	to	Spark

sc <- spark_connect(

master = "…",

app_name = "my_name"

)

Importing	the	Data

• Multiple	options	for	connecting	to	data:
– Copy	data	from	R	data	frame
– Import	from	file	(CSV,	JSON,	PARQUET)
– Using	Spark	SQL
– From	a	Hive	table

Importing	the	Data	- Today

• We	are	going	to	read	from	a	parquet	file
– Column	store	data	format	

• Can	be	read	with

spark_read_parquet()

Read	a	Parquet	File

airlines <-

spark_read_parquet(

sc,

name = "name_in_spark",

path = "path/to/file"

)

Importing	the	Data	- Today

• We	are	also	going	to	read	from	csv
• Can	be	read	with

spark_read_csv()

The	Data	Object	in	R

• We	don't	work	with	data	in	R
• We	work	with	a	connection	to	the	data
• dplyr will	create	Spark	SQL	to	run
• The	data	will	come	to	R	(if	we	ask	for	it)	after	
running	the	dplyr code

Exercise

• Ensure	you	have	a	connection	to	Spark
• Read	the	data	and	create	a	connection	object	
to	the	table

• Read	in	the	airports,	carriers	and	plane-data	
CSV	files

• What	columns	are	in	the	airports	data?
• Print	the	object	in	the	console	

(DO	NOT	View THE	DATA	YET)

Core	dplyr Functions

The	Core	dplyr Functions

Function Usage
filter Filter	the	rows of	a	data	set
select Select columns	from	a	data	set
mutate Add	or	manipulate	columns	in	a	data	set
arrange Sort the	data
summarise Generate	summaries	for	columns in	the	data

A	Quick	Example
friday <- filter(flights, DayOfWeek == 5)

friday <- select(friday, -DayOfWeek)

friday <- mutate(friday,
Date = paste(Year, Month, DayofMonth,

sep = "-"))

select(friday, Year,
Month, DayofMonth, Date)

The	Pipe	Operator

• We	can	use	dplyr as	usual	when	working	with	
spark

• This	includes	using	the	pipe	operator	(%>%)	to	
simplify	operations

Example	with	Pipes

flights %>%
filter(DayOfWeek == 5) %>%
select(-DayOfWeek) %>%
mutate(Date = paste(Year,
Month, DayofMonth, sep = "-"))

%>%
select(Year, Month,

DayofMonth, Date)

Exercise

• Create a query for the flights data
where:
– depdelay > 15, depdelay < 240, dayofmonth

== 15
– Columns: year, month, arrdelay, depdelay,

distance, uniquecarrier
• Ensure your query is using the pipe

operator

Lazy	Execution

• The	SQL	query	will	be	run	at	the	last	possible	
moment

• If	you	simply	print	results	only	10	rows	will	be	
retrieved

How	Do	You	Get	All	The	Data?

flights %>%

filter(year > 2007) %>%

filter(depdelay == 240) %>%

collect()

What	is	the	Code	Doing?

• The	dplyr functions	create	a	Spark	SQL	
statement

• We	can	see	the	SQL	statement	by	using	

show_query()

Exercise

• Using	the	code	you	wrote	in	the	last	exercise
– What	does	the	Spark	SQL	query	look	like?
– What	are	the	dimensions	of	the	data?

SQL	Functions,	Joins	
&	Sampling

Translating	to	SQL

Operators +, -, *, /, %%, ^

Mathematical
functions

abs, acos, cosh, sin, asinh, atan, atan2,
atanh, ceiling, cos, cosh, cot, coth, exp,
floor, log, log10, round, sign, sin, sinh,
sqrt, tan, tanh

Comparisons <, <=, !=, >=, >, ==, %in%

Booleans &, &&, |, ||, !

Aggregations mean, sum, min, max, sd, var, cor, cov, n

Characters paste, tolower, toupper, nchar

Casting as.double, as.integer, as.logical,
as.character, as.date

Joining	and	Sampling

Function Usage
group_by Apply a	grouping	to	the	data
left_join,
right_join,
...

Perform	data	joins	(left, right,	outer,	...)

sample_n Sample	n	rows	from	the	data

Joining

friday <- flights %>%

filter(DayOfWeek == 5) %>%

left_join(airports,
by = c(Dest = "iata")) %>%

filter(Origin %in%

c("SFO", "BOS"))

Sampling

friday %>%

sample_n(5)

Creating	New	Spark	Data	Frames

• When	you	join	or	sample	you	create	a	new	data	
frame

• You	may	want	to	save	this	to	use	later
• We	can	do	this	with	

sdf_register(r_obj, "spark_name")

Exercise

• Join	the	airport	data	to	the	flights	data
• Filter	the	data	to	retain	only	flights	originating	
in	San	Francisco	and	Boston

• Only	retain	data	for	Fridays
• Create	a	new	Spark	data	frame	containing	this	
data

Save	&	Disconnect

Saving	Your	Results

• When	we	quit	Spark	our	data	won't	be	saved
• If	we	want	to	keep	results	we	need	to	save	
them

• All	of	our	import	functions	have	equivalent	
write	functions	

spark_write_parquet()

spark_write_csv()

Disconnecting	(Don't	Do	This	Now)

• Once	we	are	done	we	need	to	disconnect	
from	the	spark	instance

spark_disconnect(sc)

