Meta Data Science:
When all the worlds data scientists are not enough

Leah McGuire
Principal Member of Technical Staff, Salesforce Einstein
lmcguire@salesforce.com
@leahmcguire
Let’s make sure you are in the right talk

What I am going to talk about:
• What does machine learning mean at Salesforce
• Problems in machine learning for business to business (B2B) companies
• Automating machine learning and how our AutoML library (Optimus Prime) works
• The utility of having strongly typed features in AutoML
• What we have learned and what we are planning
Salesforce and Machine Learning
The Problem

For the majority of businesses, data science is out of reach
Building World’s Smartest CRM

Sales Cloud Einstein
- Predictive Lead Scoring
- Opportunity Insights
- Automated Activity Capture

Commerce Cloud Einstein
- Product Recommendations
- Predictive Sort
- Commerce Insights

App Cloud Einstein
- Heroku + PredictionIO
- Predictive Vision Services
- Predictive Sentiment Services
- Predictive Modeling Services

Analytics Cloud Einstein
- Predictive Wave Apps
- Smart Data Discovery
- Automated Analytics & Storytelling

Service Cloud Einstein
- Recommended Case Classification
- Recommended Responses
- Predictive Close Time

Marketing Cloud Einstein
- Predictive Scoring
- Predictive Audiences
- Automated Send-time Optimization

Community Cloud Einstein
- Recommended Experts, Articles & Topics
- Automated Service Escalation
- Newsfeed Insights

IoT Cloud Einstein
- Predictive Device Scoring
- Recommend Best Next Action
- Automated IoT Rules Optimization
Machine learning workflows

And how much more complicated they get for B2B
Building a machine learning model
What Kaggle would lead us to believe

- Feature Engineering
- Model Training
- Model A
- Model B
- Model C
- Model Evaluation
Real-life ML
Building a ML model workflow

ETL ➔ Feature Engineering ➔ Model Training ➔ Model Evaluation

- Model A
- Model B
- Model C

Scoring ➔ Deployment ➔ Model Evaluation
Building a machine learning model
Over and over again
We can’t build one global model

• Privacy concerns
 • Customers don’t want data cross-pollinated

• Business Use Cases
 • Industries are very different
 • Processes are different

• Platform customization
 • Ability to create custom fields and objects

• Scale, Automation,
 • Ability to create
Building a machine learning model
Over and over again
Automating machine learning

Enter Einstein (and Optimus Prime)
Turning a black art into a paint by number kit.

- ML is not magic, just statistics – generalizing examples
- But there is a ‘black art’ to producing good models
 - Input data needs to be combined, filtered, cleaned etc.
 - Producing the best features for your model takes time
 - You can’t just throw a ml algorithm at your raw data and expect good results
Keep it DRY (don’t repeat yourself) and DRO (don’t repeat others)

Optimus Prime - A library to develop reusable, modular and typed ML workflows

- The Spark ML pipeline (estimator, transformer) model is nice
- The lack of types in Spark is not
- Want to use more than Spark ML

- Declarative and intuitive syntax – for both workflow generation and developers
- Typed reusable operations
- Multitenant application support
- All built in scala
Simple interchangeable parts
In a declarative type safe syntax

val featureVector = Seq(pClass, name, gender, age, sibSp, parch, ticket, cabin, embarked).vectorize()
val (pred, raw, prob) = featureVector.check(survived).classify(survived)
val workflow = new OpWorkflow().setResultFeatures(pred).setDataReader(titanicReader)
Automating typed feature engineering and modeling

(with Optimus Prime)
Features are given a type on creation
Death to runtime errors!

\[
\text{val gender} = \text{FeatureBuilder.Categorical[Titanic].extract(d \rightarrow \text{Option(d.getGender).toSet[String]})}.\text{asPredictor}
\]

- Features are strongly typed
- Each stage takes specific input type(s) and returns a specific output type(s)
Creating a workflow DAG with features

- Features point to a column of data
- The type of the feature determines which stages can act on it
Creating a workflow DAG with features

- When a stage acts on a feature it produces a new feature (or features)
- Keep on manipulating features until you get your goal
Done manipulating your features? Make them.

- Once you make your final feature you have the full DAG
- Features are materialized by the workflow
- Initial data into the workflow provided by the reader
The power of types!
Using types to automate feature engineering

```scala
val featureVector = Seq(pClass, name, gender, age, sibSp, parch, ticket, cabin, embarked).vectorize()
```

- Each feature is mapped to an appropriate .vectorize() stage based on its type
 - `gender` (a Categorical) and `age` (a Real) are automatically assigned to different stages

- You also have an option to do the exact type safe manipulations you want
 - `age` can undergo special transformations if desired
 - `val ageBuckets = age.bucketize(buckets(0, 10, 20, 40, 100))`
 - `val featureVector = Seq(pClass, name, gender, ageBuckets, sibSp, parch, ticket, cabin, embarked).vectorize()`
Show me the types!

Optimus Prime Type Hierarchy

Legend: ←→ - inheritance, **bold** - abstract class, *italic* - trait, normal - concrete class

Note: all the types are assumed to be nullable, unless NonNullable trait is mixed - https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/field_types.htm
Take the types away!!
Why would we make this monstrosity??

- Sometimes a type is all you have
- Hierarchy allows both very specific and very general stages
- Type safety for production saves a lot of headaches
Sanity Checking – the stage that checks your features

- Check data quality before modeling
- Label leakage
- Features have acceptable ranges
- The feature types allow much better checks

val checkedVector = featureVector.check(survived)
Model Selection Stage - Resampling, Hyper-parameter Tuning, Comparing Models

- Many possible models for each class of problem
- Many hyper parameters for each type of model
- Finding the right model for THIS dataset makes a huge difference

\[\text{val} (\text{pred, raw, prob}) = \text{checkedFeatureVector}.\text{classify}(\text{survived}) \]
Types can save us
And if you don’t believe me take a look at the code

```scala
val featureVector = Seq(pClass, name, gender, age, sibSp, parch, ticket, cabin, embarked).vectorize()
val (pred, raw, prob) = featureVector.check(survived).classify(survived)
val workflow = new OpWorkflow().setResultFeatures(pred).setDataReader(titanicReader)
```
Types can save us
And if you don’t believe me take a look at the code

val featureVector = Seq(pClass, name, gender, age, sibSp, parch, ticket, cabin, embarked).vectorize()
val (pred, raw, prob) = featureVector.check(survived).classify(survived)
val workflow = new OpWorkflow().setResultFeatures(pred).setDataReader(titanicReader)

def addFeatures(df: DataFrame): DataFrame = {
 // Create a new family size field := siblings + spouses + parents + children + self
 val familySizeUDF = udf { (sibsp: Double, parch: Double) => sibsp + parch + 1 }

 df.withColumn("fsize", familySizeUDF(col("sibsp"), col("parch"))) // <-- full freedom to overwrite
}

def fillMissing(df: DataFrame): DataFrame = {
 // Fill missing age values with average age
 val avgAge = df.select("age").agg(avg("age")).collect.first()

 // Fill missing embarked values with default "S" (i.e Southampton)
 val embarkedUDF = udf{e: String}=> e match { case x if x == null || x.isEmpty => "S"; case x => x}

 df.na.fill(Map("age" -> avgAge)).withColumn("embarked", embarkedUDF(col("embarked")))
}
Types can save us
And if you don’t believe me take a look at the code

```scala
// Modify the dataframe
val allData = fillMissing(addFeatures(rawData)).cache() // <-- need to remember about caching
// Split the data and cache it
val Array(trainSet, testSet) = allData.randomSplit(Array(0.75, 0.25)).map(_.cache())

// Prepare categorical columns
val categoricalFeatures = Array("pclass", "sex", "embarked")
val stringIndexers = categoricalFeatures.map(colName =>
  new StringIndexer().setInputCol(colName).setOutputCol(colName + "._index").fit(allData)
)

// Concat all the feature into a numeric feature vector
val allFeatures = Array("age", "sibsp", "parch", "fsize") ++ stringIndexers.map(_.getOutputCol)
val vectorAssembler = new VectorAssembler().setInputCols(allFeatures).setOutputCol("feature_vector")

// Prepare Logistic Regression estimator
val logReg = new LogisticRegression().setFeaturesCol("feature_vector").setLabelCol("survived")

// Finally build the pipeline with the stages above
val pipeline = new Pipeline().setStages(stringIndexers ++ Array(vectorAssembler, logReg))
```
Types can save us
And if you don’t believe me take a look at the code

```scala
// Cross validate our pipeline with various parameters
val paramGrid =
  new ParamGridBuilder()
  .addGrid(logReg.regParam, Array(1, 0.1, 0.01))
  .addGrid(logReg.maxIter, Array(10, 50, 100))
  .build()

val crossValidator =
  new CrossValidator()
  .setEstimator(pipeline) // <-- set our pipeline here
  .setEstimatorParamMaps(paramGrid)
  .setEvaluator(new BinaryClassificationEvaluator().setLabelCol("survived"))
  .setNumFolds(3)

// Train the model & compute scores
val model: CrossValidationModel = crossValidator.fit(trainSet)
val scores: DataFrame = model.transform(testSet)

// Save the model for later use
model.save("/models/titanic-model.ml")
```
Where are we going and what have we learned
Key takeaways

- ML for B2B is a whole other beast
- Spark ML is great, but it needs type safety
- Simple and intuitive syntax saves you trouble down the road
- Types in ML are incredibly useful
- Scala has all the relevant facilities to provide the above
- Modularity and reusability is the key
Going forward with Optimus Prime

• Going beyond Spark ML for algorithms and small scale
• Making everything smarter (feature eng, sanity checking, model selection)
• Template generation
• Improvements to developer interface
If You’re Curious ...

PredictionIO
HEROKU
MetaMind

einstein-recruiting@salesforce.com
Thank You