A Flexible Framework for Complex Neural Networks

Shohei Hido Orion Wolfe
Preferred Networks, Inc.
Simple neural networks: “Just deep” convolutional neural network

AlexNet, Kryzyevsky+, 2012 ImageNet winner

GoogLeNet, Szegedy+, 2014 ImageNet winner

Residual Network, He+, 2015 ImageNet winner
Complex neural networks: Stochastic, densely-connected, hierarchical, recurrent

- Stochastic Residual Net, Huang+, 2016
- FractalNet, Larsson+, 2016
- Dense CNN, Huang+, 2016
- RoR, Zhang+, 2016
- Recurrent NN (LSTM)
Chainer is one of the NVIDIA-supported DL frameworks

- Chainer uses a unique scheme named *Define-by-Run*

Chainer fits very well to complex neural networks
Preferred Networks (PFN)
A startup that applies deep learning to industrial IoT

- Founded: March 2014
- Headquarter: Tokyo, Japan
- US subsidiary: SF bay area, California
- Company size: 50 engineers & researchers
- Investors: Toyota, FANUC, NTT
What we do with Chainer: Partnering with world-leading companies

- Applying deep learning to industrial problems with real-world data
 - Specific requirements, modification to algorithms, many trial-and-errors
 - Completely different from making general-purpose recognition systems
- A proof: PFN won the 2nd prize @ Amazon Picking Challenge 2016

Toyota NTT FANUC
Panasonic Cisco NVIDIA
Two types of background behind DL frameworks

<table>
<thead>
<tr>
<th>1. Scalability-oriented</th>
<th>2. Flexibility-oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use-cases in mind</td>
<td>Use-cases in mind</td>
</tr>
<tr>
<td>– Image/speech recognition system</td>
<td>– New algorithm research</td>
</tr>
<tr>
<td>– Fast DL as a service in cloud</td>
<td>– R&D projects for AI products</td>
</tr>
<tr>
<td>Problem type</td>
<td>Problem type</td>
</tr>
<tr>
<td>– A few general applications</td>
<td>– Various specific applications</td>
</tr>
<tr>
<td>– 10+ million training samples</td>
<td>– 10+ k training samples</td>
</tr>
<tr>
<td>– 10+ nodes cluster w/ fast network</td>
<td>– 1 node with multiple GPUs</td>
</tr>
<tr>
<td>Possible bottleneck</td>
<td>Possible bottleneck</td>
</tr>
<tr>
<td>– Tuning of well-known algorithms</td>
<td>– Trial-and-error in prototyping</td>
</tr>
<tr>
<td>– Distributed computation for model/data-parallel training</td>
<td>– Debugging, profiling & refactoring</td>
</tr>
<tr>
<td></td>
<td>– (wait time during compilation)</td>
</tr>
</tbody>
</table>
Designed for efficient research & development

- Flexible: new kinds of complex models for various applications
- Intuitive: rapid prototyping and efficient trial-and-error
- Powerful: comparable performance for 1 node & multi-GPUs

TensorFlow Caffe Theano Torch

Scalability-oriented Flexibility-oriented
Agenda

- Deep learning framework basics
- Basics of Chainer
- Chainer features
- Performance and applications
Neural network and computation

Forward computation

Input

Hidden units

Output

Backward computation (backpropagation)

Object: Tulip
Anomaly score: 0.35
Category: Sports

Image
Sensor
Text
Building and training neural networks: Computational graph construction is the key

1. Construct a computational graph
 - Based on network definition given by users
 - Chains of functions and operations on input variables

2. Compute loss and gradients
 - Forward computation to calculate loss for a minibatch
 - Backpropagation gives gradients to all of parameters

3. Optimize model
 - Update each parameter with the gradient
 - Repeat until convergence

Step 1. is the most important and there are many approaches
Building blocks

- These functionalities are very similar between frameworks
- But the structure, abstraction level, and interface are different
- It comes to the design of domain-specific language for NN

<table>
<thead>
<tr>
<th>Array data structure (vector/matrix/tensor)</th>
<th>Network (computational graph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations & functions</td>
<td>Optimizer (SGD/AdaGrad/Adam)</td>
</tr>
</tbody>
</table>
3 types of domain-specific language: Network definition to computational graph construction

- **Text DSL**
 - Ex. Caffe (prototxt)
 - Ex. CNTK (NDL)

- **Symbolic program**
 - Operations on symbols
 - Ex. Theano
 - Ex. TensorFlow

- **Imperative program**
 - Direct computations on raw data arrays
 - Ex. Torch.nn
 - Ex. Chainer

%% Definition in text
f: {
 "A": "Variable",
 "B": "Variable",
 "C": ["B", "*", "A"],
 "ret": ["C", "+", 1]
}

Compile
f = compile("f.txt")
d = f(A=np.ones(10),
 B=np.ones(10) * 2)

Symbolic definition
A = Variable('A')
B = Variable('B')
C = B * A
D = C + Constant(1)
Compile
f = compile(D)
d = f(A=np.ones(10),
 B=np.ones(10) * 2)

Imperative declaration
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1

Ex. MXNet

Comparison of DSL type

<table>
<thead>
<tr>
<th>DSL type</th>
<th>Pros.</th>
<th>Cons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text DSL</td>
<td>• Human-readable definition</td>
<td>• Users must study the format</td>
</tr>
<tr>
<td></td>
<td>• Non-programmer can easily edit the network</td>
<td>• Format might have to be extended for new algorithms</td>
</tr>
<tr>
<td>Symbolic</td>
<td>• Static analysis at compile</td>
<td>• Users must study special syntax</td>
</tr>
<tr>
<td></td>
<td>• Optimization before training</td>
<td>• May need more efforts to implement new algorithms</td>
</tr>
<tr>
<td></td>
<td>• Easy to parallelize</td>
<td></td>
</tr>
<tr>
<td>Imperative</td>
<td>• Less efforts to learn syntax</td>
<td>• Hard to optimize in advance</td>
</tr>
<tr>
<td></td>
<td>• Easy debugging and profiling</td>
<td>• Less efficient in memory allocation and parallelization</td>
</tr>
<tr>
<td></td>
<td>• Suitable for new algorithms with complex logic</td>
<td></td>
</tr>
</tbody>
</table>

Chainer is at the extreme end of imperative program for high flexibility
Agenda

- Deep learning framework basics
- Basics of Chainer
- Chainer features
- Performance and applications
Chainer as an open-source project

- https://github.com/pfnet/chainer
- 78 contributors
- 1,669 stars & 418 forks
- 5,805 commits
- Actively developed
 - 32 releases from v1.0.0 (June 2015) to v1.16.0 (September 2016)
 - Average #commits per week > 70
Chainer software stack

- Chainer is built on top of NumPy and CUDA
- CuPy is also introduced as an equivalent of NumPy on GPU
Graph build scheme (1/2) - Define-and-Run: Most of frameworks use this (Chainer does not)

- **Define**: build a computational graph based on definition
- **Run**: update the model (parameters) using training dataset
Graph build scheme (2/2) - Define-by-Run: Computational graph construction on the fly

- No graph is constructed before training
- Instead, the graph is built at each forward computation
- Computational graph can be modified dynamically for each iteration/sample or depending on some conditions

Define-by-Run

- Model definition
- Training data
- Parameters
- Computational graph
- Dynamic change
- Conditions
- Update
- Gradient function
Define-by-Run example: MLP for MNIST

- Only transformations between units are set before training

 \[
 l_1 = \text{Linear}(784, n_units) \\
 l_2 = \text{Linear}(n_units, 10)
 \]

- Connection is given as forward computation

  ```python
  def forward(x):
    h1 = \text{ReLU}(l1(x))
    return l2(h1)
  ```
Define-by-Run:
An interpreted language for neural network

- **Advantage**
 - Flexibility for new algorithms with complex components
 - Ex. recurrent, recursive, densely-connected, dilated, etc
 - Intuitive coding with highly imperative network definition
 - Ex. stochastic network of which graph changes for each iteration

- **Current drawbacks**
 - Graph is generated every time also for fixed networks
 - No optimization even for static part of graphs
 - JIT-like analysis and subgraph cache might be useful
Consider an objective (Link.Linear): \(L = f(x \ast w + b) \)

This computes the value of \(L \) in forward computation, and simultaneously builds the following computational graph

The gradient of \(L \) can be computed with respect to any variables by backpropagation

Then the optimizer updates the value of parameters
Code sample (1/3): Convolutional neural network

```python
class AlexNet(Chain):
    def __init__(self):
        super(AlexNet, self).__init__(
            conv1=L.Convolution2D(3, 96, 11, stride=4),
            conv2=L.Convolution2D(96, 256, 5, pad=2),
            conv3=L.Convolution2D(256, 384, 3, pad=1),
            conv4=L.Convolution2D(384, 384, 3, pad=1),
            conv5=L.Convolution2D(384, 256, 3, pad=1),
            fc6=L.Linear(9216, 4096),
            fc7=L.Linear(4096, 4096),
            fc8=L.Linear(4096, 1000),
        )

    def __call__(self, x, t):
        h = F.max_pooling_2d(F.relu(F.local_response_normalization(self.conv1(x))), 3, stride=2)
        h = F.max_pooling_2d(F.relu(F.local_response_normalization(self.conv2(h))), 3, stride=2)
        h = F.relu(self.conv3(h))
        h = F.relu(self.conv4(h))
        h = F.max_pooling_2d(F.relu(self.conv5(h)), 3, stride=2)
        h = F.dropout(F.relu(self.fc6(h)), train=self.train)
        h = F.dropout(F.relu(self.fc7(h)), train=self.train)
        y = self.fc8(h)
        return y

* ImageNet Classification with Deep Convolutional Neural Networks
```
class SimpleRNN(Chain):
 def __init__(self, n_vocab, n_units):
 super(SimpleRNN, self).__init__(
 embed=L.EmbedID(n_vocab, n_units),
 x2h=L.Linear(n_units, n_units),
 h2h=L.Linear(n_units, n_units),
 h2y=L.Linear(n_units, n_vocab),)
 self.h = None

 def __call__(self, x):
 y, h_new = self.fwd_one_step(x, self.h)
 self.h = h_new
 return y

 def fwd_one_step(self, x, h):
 x = F.tanh(self.embed(x))
 if h is None:
 h = F.tanh(self.x2h(x))
 else:
 h = F.tanh(self.x2h(x) + self.h2h(h))
 y = F.softmax(self.h2y(h))
 return y, h

Truncated BPTT (length=3)
for i in range(0, datasize, batchsize):
 ... accum_loss += model(x, t)
 if i % bptt_length == 0:
 model.zerograds()
 accum_loss.backward()
 accum_loss.unchain_backward()
 optimizer.update()
A variant of Residual Net that skips connections stochastically

- Outperformed the original Residual Net (ImageNet 2015 winner, MSR)
- Stochastic skip: \(H_\ell = \begin{cases}
\text{ReLU}(f_\ell(H_{\ell-1}) + \text{id}(H_{\ell-1})) \\
\text{ReLU}(\text{id}(H_{\ell-1}))
\end{cases} \)

w/ survival probability: \(p_\ell = \Pr(b_\ell = 1) \)

Mock code in Chainer

class StochasticResNet(Chain):
 def __init__(self, prob, size, ...):
 super(StochasticResNet, size, ...).__init__(
 ## Define f[i] as same for Residual Net
 self.p = prob # Survival probabilities
)

 def __call__(self, h):
 for i in range(self.size):
 b = numpy.random.binomial(1, self.p[i])
 c = self.f[i](h) + h if b == 1 else h
 h = F.relu(c)
 return h

Taken from http://arxiv.org/abs/1603.09382v2
G. Huang et al.
Agenda

- Deep learning framework basics
- Basics of Chainer
- Chainer features
- Performance and applications
Easy to debug during forward computation

MNIST input has 784 dimensions, not 748

```python
def __init__(self):
    super(MLP3Wrong, self).__init__(
        l1=L.Linear(748, 100),
        l2=L.Linear(100, 100),
        l3=L.Linear(100, 10)
    )
```

Error stack trace in IPython
(Will be more clean soon)

Where the error actually happened in forward computation

```python
<ipython-input-28-b52a3b9f26b2> in __call__(self, x)
    10 11  def __call__(self, x):
    --> 12      h1 = F.tanh(self.l1(x))
    13  h2 = F.tanh(self.l2(x))
    14  y = self.l3(h3)
```

Type is checked at the numpy array level

```
TypeError: Invalid operation is performed in: LinearFunction (Forward)
Expect: prod(in_types[0].shape[1:]) == in_types[1].shape[1]
Actual: 784 != 748
```
CuPy: (partially-)NumPy-compatible GPU library

- **Motivation**: NumPy + CUDA = CuPy
 - NumPy is the standard library in Python for numerical computation
 - Unfortunately NumPy does NOT work with CUDA, instead CuPy does it

- **Ex. CPU/GPU-agnostic logsumexp function**
  ```python
def logsumexp(x, axis=None):
    xp = cuda.get_array_module(x)  # Get CuPy or NumPy
    x_max = x.max(axis)
    exp_sum = xp.exp(x - x_max).sum(axis)
    return x_max + xp.log(exp_sum)
  ```

- **CuPy supports**:
 - NVIDIA cuBLAS and cuDNN for faster computation
 - User-defined functions and CUDA kernels
 - Array indexing, slicing, transpose, and reshape
 - All dtypes, broadcasting, memory pool, etc
Use CuPy just like NumPy

- **Conversion between** `numpy.ndarray` and `cupy.ndarray`
  ```python
  w_c = cupy.asarray(numpy.ones(10))  # cupy.ndarray
  w_n = cupy.asnumpy(cupy.ones(10))   # numpy.ndarray
  ```

- **Speed-up by CuPy over NumPy: 5 to 25 times**
  ```python
  def test(xp):
      a = xp.arange(1000000).reshape(1000, -1)
      return a.T * 2
  
  for i in range(1000):
      test(numpy)
  
  for i in range(1000):
      test(cupy)
  ```

<table>
<thead>
<tr>
<th></th>
<th>msec</th>
<th>speed up</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumPy</td>
<td>2,929</td>
<td>1.0</td>
</tr>
<tr>
<td>CuPy</td>
<td>585</td>
<td>5.0</td>
</tr>
<tr>
<td>CuPy + Memory Pool</td>
<td>123</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Intel Core i7-4790 @3.60GHz, 32GB, GeForce GTX 970
Training loop abstraction (from v1.11.0): Manual training loop is not necessary

- Dataset & Iterator: dataset manipulation over iterations
- Trainer & Updater: execute training loops w/ settings
- Extension: do something else during training loops
 - Ex. dump_graph(), snapshot, LogReport, ProgressBar,

```
$ python train_mnist.py --gpu=0
GPU: 0
# unit: 1000
# Minibatch-size: 100
# epoch: 20

epoch | main/loss | validation/main/loss | main/accuracy | validation/main/accuracy
1     | 0.18805   | 0.0980894           | 0.942934     | 0.9673
2     | 0.0730052 | 0.0749994           | 0.976849     | 0.9761

progress: [############################] 14.17%
this epoch [###############################] 83.33%
1700 iter, 2 epoch / 20 epochs
174.79 iters/sec. Estimated time to finish: 0:00:58.926501.
```
Miscellaneous

- Other features
 - Install with pip in one line: `$ pip install chainer`
 - Multi-GPU support by explicitly selecting the ID to use
 - Pre-trained Caffe model import from Model Zoo
 - Model serialization & save & load: HDF5 or NumPy npz
 - Automatic initialization of layer input size when specified as `None`
Agenda

- Deep learning framework basics
- Basics of Chainer
- Chainer features
- Performance and applications
Benchmark results (CNN): Chainer shows comparable performance

- Forward computation is almost the same with Torch/TF
- Chainer’s backward computation has been accelerated from v1.7 to v1.15 to achieve comparable performance

Chainer v1.15* shows our unofficial result measured independently on September 2016
Other results are measured at https://github.com/soumith/convnet-benchmarks by April 2016
All frameworks except Caffe (native) used cuDNN
Chainer in industry: From demonstrations to commercialization

- Chainer-based collaborations are on-going with partners
 - computer vision, deep reinforcement learning, etc...
- FANUC will commercialize the outcome by the end of 2016
Recent achievement: PFN used Chainer at Amazon Picking Challenge 2016

- Chainer for image segmentation and object recognition
- PFN team won the 2nd prize for picking and 4th for stow tasks
 - Compete with other 15 established robotics labs and companies
 - Only 3 months to build the vision system and robot hand from scratch

<table>
<thead>
<tr>
<th>Stow task</th>
<th>Pick task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 214: Delft</td>
<td>1. 105: Delft</td>
</tr>
<tr>
<td>2. 186: NimbRo</td>
<td>2. 105: PFN</td>
</tr>
<tr>
<td>3. 164: MIT</td>
<td>3. 97: NimbRo</td>
</tr>
<tr>
<td>4. 161: PFN</td>
<td>4. 67: MIT</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>16. ARCV</td>
<td>16. Rutgers</td>
</tr>
</tbody>
</table>
Researcher’s perspective on Chainer: Easy to use and extend

- Fast Learning curve
 - Concise object model, modular libraries
- Straightforward GPU support
 - Numpy and CuPy interchangeable
 - Support for multiple GPUs
- Easily customizable
- Easy to debug / fix
- Latest deep learning algorithms
Researcher’s perspective on Chainer: Example case study

- Solving for systems of equations for a physical, thermodynamics system

- Several methods can be possible:
 - Physical modeling
 - Empirical modeling / other machine learning techniques
 - Deep learning

- Prior knowledge about monotonic and coupling properties can be more easily incorporated into deep learning using Chainer

- In this situation, the problem was easily set-up using Chainer and the model was both expressive and concise

\[x = f(p, u, T, c, v) \]
Summary

- Chainer is a Python-based deep learning framework with dynamic network construction scheme and CuPy.
- It is designed for efficient research and prototyping while keeping comparable performance and actively improving.
- Github: https://github.com/pfnet/chainer

Your contributions will be appreciated & we are hiring!