
Parquet performance tuning:
The missing guide

Ryan Blue
Strata + Hadoop World NY 2016

● Big data at Netflix
● Parquet format background
● Optimization basics
● Stats and dictionary filtering
● Format 2 and compression
● Future work

Contents.

Big data at Netflix.

Big data at Netflix.

40+ PB DW Read 3PB Write 300TB600B Events

Strata San Jose results.

Metrics dataset.
Based on Atlas, Netflix’s telemetry platform.

● Performance monitoring backend and UI

● http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html

Example metrics data.

● Partitioned by day, and cluster

● Columns include metric time, name, value, and host

● Measurements for each minute are stored in a Parquet table

Parquet format background.

Parquet data layout.
ROW GROUPS.

● Data needed for a group of rows to be reassembled

● Smallest task or input split size

● Made of COLUMN CHUNKS

COLUMN CHUNKS.

● Contiguous data for a single column

● Made of DATA PAGES and an optional DICTIONARY PAGE

DATA PAGES.

● Encoded and compressed runs of values

Row groups.

... F

A B C D

a1 b1 c1 d1

...

aN bN cN dN

...

HDFS block

Column chunks and pages.

... F

dict

Read less data.
Columnar organization.

● Encoding: make the data smaller

● Column projection: read only the columns you need

Row group filtering.

● Use footer stats to eliminate row groups

● Use dictionary pages to eliminate row groups

Page filtering.

● Use page stats to eliminate pages

Basics.

Setup.
Parquet writes:

● Version 1.8.1 or later – includes fix for incorrect statistics, PARQUET-251

● 1.9.0 due in October

Reads:

● Presto: Used 0.139

● Spark: Used version 1.6.1 reading from Hive

● Pig: Used parquet-pig 1.9.0 for predicate push-down

Pig configuration.
-- enable pushdown/filtering
set parquet.pig.predicate.pushdown.enable true;

-- enables stats and dictionary filtering
set parquet.filter.statistics.enabled true;
set parquet.filter.dictionary.enabled true;

Spark configuration.
// turn on Parquet push-down, stats filtering, and dictionary filtering
sqlContext.setConf("parquet.filter.statistics.enabled", "true")
sqlContext.setConf("parquet.filter.dictionary.enabled", "true")
sqlContext.setConf("spark.sql.parquet.filterPushdown", "true")

// use the non-Hive read path
sqlContext.setConf("spark.sql.hive.convertMetastoreParquet", "true")

// turn off schema merging, which turns off push-down
sqlContext.setConf("spark.sql.parquet.mergeSchema", "false")
sqlContext.setConf("spark.sql.hive.convertMetastoreParquet.mergeSchema",
 "false")

Writing the data.
Spark:

 sqlContext

 .table("raw_metrics")

 .write.insertInto("metrics")

Pig:

 metricsData = LOAD 'raw_metrics'

 USING SomeLoader;

 STORE metricsData INTO 'metrics'

 USING ParquetStorer;

Writing the data.
Spark:

 sqlContext

 .table("raw_metrics")

 .write.insertInto("metrics")

Pig:

 metricsData = LOAD 'raw_metrics'

 USING SomeLoader;

 STORE metricsData INTO 'metrics'

 USING ParquetStorer;

OutOfMemoryError
or

ParquetRuntimeException

Writing too many files.
Data doesn’t match partitioning.

● Tasks write a file per partition

Symptoms:

● OutOfMemoryError

● ParquetRuntimeException: New Memory allocation 1047284 bytes is smaller than the

minimum allocation size of 1048576 bytes.

● Successfully write lots of small files, slow split planning

Task 1 part=1/

part=2/

Task 2 part=3/

part=4/

Task 3 part=.../

Account for partitioning.
Spark.

 sqlContext

 .table("raw_metrics")

 .sort("day", "cluster")

 .write.insertInto("metrics")

Pig.

 metrics = LOAD 'raw_metrics'

 USING SomeLoader;

 metricsSorted = ORDER metrics

 BY day, cluster;

 STORE metricsSorted INTO 'metrics'

 USING ParquetStorer;

Filter to select partitions.
Spark.

 val partition = sqlContext

 .table("metrics")

 .filter("day = 20160929")

 .filter("cluster = 'emr_adhoc'")

Pig.

 metricsData = LOAD 'metrics'

 USING ParquetLoader;

 partition = FILTER metricsData BY

 date == 20160929 AND

 cluster == 'emr_adhoc'

Stats filters.

Sample query.
Spark.

 val low_cpu_count = partition

 .filter("name =

 'system.cpu.utilization'")

 .filter("value < 0.8")

 .count()

Pig.

 low_cpu = FILTER partition BY

 name == 'system.cpu.utilization' AND

 value < 0.8;

 low_cpu_count = FOREACH

 (GROUP low_cpu ALL) GENERATE

 COUNT(name);

My job was 5 minutes faster!

Did it work?
● Success metrics: S3 bytes read, CPU time spent

 S3N: Number of bytes read: 1,366,228,942,336
 CPU time spent (ms): 280,218,780

● Filter didn’t work. Bytes read shows the entire partition was read.

● What happened?

Inspect the file.
● Stats show what happened:

Row group 0: count: 84756 845.42 B records

 type encodings count avg size nulls min / max

name BINARY G _ 84756 61.52 B 0 "A..." / "z..."

...

Row group 1: count: 84756 845.42 B records

 type encodings count avg size nulls min / max

name BINARY G _ 85579 61.52 B 0 "A..." / "z..."

● Every row group matched the query

Add query columns to the sort.
Spark.

 sqlContext

 .table("raw_metrics")

 .sort("day", "cluster", "name")

 .write.insertInto("metrics")

Pig.

 metrics = LOAD 'raw_metrics'

 USING SomeLoader;

 metricsSorted = ORDER metrics

 BY day, cluster, name;

 STORE metricsSorted INTO 'metrics'

 USING ParquetStorer;

Inspect the file, again.
● Stats are fixed:

Row group 0: count: 84756 845.42 B records

 type encodings count avg size nulls min / max

name BINARY G _ 84756 61.52 B 0 "A..." / "F..."

...

Row group 1: count: 85579 845.42 B records

 type encodings count avg size nulls min / max

name BINARY G _ 85579 61.52 B 0 "F..." / "N..."

...

Row group 2: count: 86712 845.42 B records

 type encodings count avg size nulls min / max

name BINARY G _ 86712 61.52 B 0 "N..." / "b..."

Dictionary filters.

Dictionary filtering.
Dictionary is a compact list of all the values.

● Search term missing? Skip the row group

● Like a bloom filter without false positives

When dictionary filtering helps:

● When a column is sorted in each file, not globally sorted – one row group matches

● When filtering an unsorted column

dict dict dict

Dictionary filtering overhead.
Read overhead.

● Extra seeks

● Extra page reads

Not a problem in practice.

● Reading both dictionary and row group resulted in < 1% penalty

● Stats filtering prevents unnecessary dictionary reads

dict dict dict

Works out of the box, right?
Nope.

● Only works when columns are completely dictionary-encoded

● Plain-encoded pages can contain any value, dictionary is no help

● All pages in a chunk must use the dictionary

Dictionary fallback rules:

● If dictionary + references > plain encoding, fall back

● If dictionary size is too large, fall back (default threshold: 1 MB)

Fallback to plain encoding.
parquet-tools dump -d
 utc_timestamp_ms TV=142990 RL=0 DL=1 DS: 833491 DE:PLAIN_DICTIONARY
--
 page 0: DLE:RLE RLE:BIT_PACKED V:RLE SZ:72912
 page 1: DLE:RLE RLE:BIT_PACKED V:RLE SZ:135022
 page 2: DLE:RLE RLE:BIT_PACKED V:PLAIN SZ:1048607
 page 3: DLE:RLE RLE:BIT_PACKED V:PLAIN SZ:1048607
 page 4: DLE:RLE RLE:BIT_PACKED V:PLAIN SZ:714941

What’s happening:

● Values repeat, but change over time

● Dictionary gets too large, falls back to plain encoding

● Dictionary encoding is a size win!

Avoid encoding fallback.
Increase max dictionary size.

● 2-3 MB usually worked

● parquet.dictionary.page.size

Decrease row group size.

● 24, 32, or 64 MB

● parquet.block.size

● New dictionary for each row group

● Also lowers memory consumption!

Run several tests to find the right configuration (per table).

Row group size.
Other reasons to decrease row group size:

● Reduce memory consumption – but not to avoid write-side OOM

● Increase number of tasks / parallelism

Results!

Results (from Pig).
CPU and wall time dropped.

● Initial: CPU Time: 280,218,780 ms Wall Time: 15m 27s

● Filtered: CPU Time: 120,275,590 ms Wall Time: 9m 51s

● Final: CPU Time: 9,593,700 ms Wall Time: 6m 47s

Bytes read is much better.

● Initial: S3 bytes read: 1,366,228,942,336 (1.24 TB)

● Filtered: S3 bytes read: 49,195,996,736 (45.82 GB)

Filtered vs. final time.
Row group filtering is parallel.

● Split planning is independent of stats (or else is a bottleneck)

● Lots of very small tasks: read footer, read dictionary, stop processing

Combine splits in Pig/MR for better time.

● 1 GB splits tend to work well

Other work.

Format version 2.
What’s included:

● New encodings: delta-integer, prefix-binary

● New page format to enable page-level filtering

New encodings didn’t help with Netflix data.

● Delta-integer didn’t help significantly, even with timestamps (high overhead?)

● Not large enough prefixes in URL and JSON data

 Page filtering isn’t implemented (yet).

Brotli compression.
● New compression library, from Google

● Based on LZ77, with compatible license

Faster compression, smaller files, or both.

● brotli-5: 19.7% smaller, 2.7% slower – 1 day of data from Kafka

● brotli-4: 14.8% smaller, 12.5% faster – 1 hour, 4 largest Parquet tables

● brotli-1: 8.1% smaller, 28.3% faster – JSON-heavy dataset

Brotli compression. (continued)

Future work.

Future work.
Short term:

● Release Parquet 1.9.0

● Test Zstd compression

● Convert embedded JSON to Avro – good preliminary results

Long-term:

● New encodings: Zig-zag RLE, patching, and floating point decomposition

● Page-level filtering

Thank you!
Questions?

https://jobs.netflix.com/
rblue@netflix.com

