Stream Analytics in the Enterprise
A look at Intel’s internal IOT implementation

Moty Fania
Principle Engineer,
Big Data Analytics @ Intel
June 2016
About us - Advanced Analytics Team @ Intel IT

- Specialized in Big Data and Machine Learning
- Team charter
 ✓ Solve strategic high value business problems
 ✓ Leverage analytics to grow Intel’s revenue
- Main skills are Big Data software engineering and Data Science
- Open Source technologies
Internet of Things

- Adoption of IoT within the enterprise is lagging
 - Challenges of on-premises deployment
 - Hard to determine & realize value
 - Lack of infrastructure & skills to enable Analytics
THE APPLICABILITY OF IOT WITHIN THE ENTERPRISE

- Stream Analytics can be applied effectively in the enterprise to enable near-real-time actuation and closed loop systems.

- Use cases identified at Intel:
 - Manufacturing
 - Smart Buildings
 - Supply Chain
 - Preventive maintenance

100k+ measurements points read manually to ensure regulatory compliance, factory operations, and production ramps.
COMMN PROBLEMS IN THE ENTERPRISE

- Large number of E2E products
- Non-interoperable solutions
- Increased security risk footprint
- Conflicting wireless radios
- Duplicated infrastructures
- Duplicated support models

VERTICAL VS. HORIZONTAL IOT

- **USE CASE 1**
 - Water Leak
 - Temperature
 - Power

- **USE CASE 2**
 - ZigBee

- **USE CASE 3**
 - WiFi

#StrataHadoop
ARE THERE ANY COMMONALITIES IN IOT PROJECTS?

- Different use cases have different requirements
- However most IOT projects have a basic set of common needs
- These basic needs can be addressed with one reusable platform

THE IOT HIERARCHY OF NEEDS

1. Let the Data flow from sensor to Cloud Storage
2. “See” the data – visualization/Charts
3. Define rules / monitors
4. Auto Machine Detection
5. Build On Top

#StrataHadoop
A common horizontal platform for open connectivity, better security, centralization, and support simplicity.

Breaking Down the Silos:

- **USE CASE 1**: Water Leak, Power, Temperature
- **USE CASE 2**: Water Leak, Power, Temperature
- **USE CASE 3**: Water Leak, Power, Temperature

COMMON IOT PLATFORM

- **GW**: Gateway
- **MANAGEMENT**: Management
- **STORAGE**: Storage
- **ANALYTICS**: Analytics

Water Leak
Temperature
Power
SMART INGESTION CHARACTERISTICS

SCALABILITY
- Linear scalability (scale Out)
- Extremely High concurrencies
- High Throughput

FAULT TOLERANCE
- No Single point of failure
- Seamless recovery
- Persistent

SMART DATA PIPE
- Apply analytics on the Stream
- Trigger actions (close the feedback loop) in timely manner

PERSONALIZED
- Per single device or user
- Maintain state and required data for ML

EASY TO USE
- Easily subscribe to any Stream and focus on logic
- Use familiar development Languages (Java, Scala)
- Easy to deploy, anywhere
HIGH LEVEL PLATFORM ARCHITECTURE

The platform leverages Intel’s IT Big data assets + Docker & CoreOS containers.
AKKA & THE ACTOR MODEL

Producer

Inbox (Queue)

Behavior

onRecieve()

tell case "sensor 1" =>
case "keep alive" =>

State

- Message Driven
- Lock-free
- Location-transparent
- High performance
- Fault Tolerant
- Scales linearly

MICRO-SERVICE (ACTOR) ORIENTED.
STREAM PROCESSING MANAGEMENT Layer ("Pigeon")

- Scale-Out, Symmetric Architecture (Cluster Sharding)
- Fault tolerance
- Persistence
- Back Pressure (reactive streams)

1. Code your processing logic in Java or Scala
2. Subscribe to your data stream.
3. Deploy topology to the processing cluster.
PIGEON HL DESIGN: SINGLE NODE

Subscriber Region -> Mediator Actor -> Topology Region

Scalable Message Queue: kafka
Device Registry

my topic -> topology/create -> REST API -> Storage
PIGEON HL DESIGN: CLUSTER

Scalable Message Queue

Seed 1
Node 1
Node 2
Node 3
Seed 2

Raw Data

Enriched Data

Distributed Persistence (Apache Cassandra)

Storage

Raw Data

#StrataHadoop
Core OS & Docker containers enable portability and ease of deployment anywhere.

Enables the flexibility of choosing a set of desired containers based on a given use case requirements.
SELF-SERVICE DATA MONITORS

- Spark Streaming based capability
- Allows users to define their own monitors / rules through UI
 - Self- Service
 - Avoid the need to monitor charts manually
 - Near Real time– address any issues in a timely manner
 - Leverage human domain expertise
 - Automated actuation

Example: Trigger action A when temperature of device X is above 40 degrees for more than 10 min
Advanced Predictive Analytics Building Blocks

The platform includes out-of-the-box Machine learning capabilities to automatically react to machine or sensor data:

- Reusable building blocks
- Reduces the need for manual rules or domain expertise
- Near real-time actuation
- Can enable preventive maintenance use cases
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time series classification</td>
<td>A component that checks for each sensor whether its data is stationary, periodic, or neither</td>
</tr>
<tr>
<td>Periodicity removal</td>
<td>A component that models the period (if one exists) and cancels it out</td>
</tr>
<tr>
<td>Change detection</td>
<td>An ensemble of tests that either monitor a single sensor or a collection of device sensors</td>
</tr>
<tr>
<td>Alert classification</td>
<td>A set of nonparametric statistical tests that enable pointing out the most significant changes causing each alert</td>
</tr>
</tbody>
</table>
OTHER OPPORTUNITIES

• Many operational IT activities can be “translated” into IOT Kind, stream analytics scenarios

• Will allow a higher level of proactivity and a shift from manual monitoring and fire fighting to higher value work
We deployed Internal, multi-tenant IoT platform to enable stream analytics use cases.

Platform leverages previous Big data infrastructure investments.

Core OS & Docker enable ease of deployment on-premises.

Smart Data pipes & stream analytics are key to derive insights in timely manner.

Summary
THANK YOU!