Best practices to extract value from Hadoop with predictive analytics

Zoltan Prekopcsak
VP Big Data

June 2, 2016
90% of Deployed Data Lakes are "USELESS"

"Through 2018, 90% of deployed data lakes will be useless as they are overwhelmed with information assets captured for uncertain use cases."

Figure 5. Hadoop Challenges

- SKILLS GAP is a major adoption inhibitor, cited by 57%
- How to EXTRACT VALUE from Hadoop, cited by 49%

© 2015 Gartner, Inc. and/or its affiliates. All rights reserved.
Different Approaches to Big Data Analytics

Sampling

Native Distributed Algorithms

Grid Computing
Approach 1: Sampling

- Sampling
- Native Distributed Algorithms
- Grid Computing
Sampling: Data Movement & Processing

• Data Movement
 ▪ Pulls sample data from HDFS/Hive/Impala

• Data Processing
 ▪ In the analytics tool

Performs Calculations

Pieces of data pulled out of Hadoop
Sampling: Pros & Cons

- **Pros**
 - Simple and easy to start with
 - Usually works well for data exploration and early prototyping
 - Some ML models would not benefit from more data anyway

- **Cons**
 - Many ML models would benefit from more data
 - Cannot be used when large scale data preparation is needed
 - Hadoop is used as a data repository only
Sampling: Best Practices

• When to use it
 + Only data exploration / data understanding
 + Early prototyping on prepared and clean data
 + Machine Learning modeling with very few and basic patterns (e.g. only a handful of columns and binary prediction target)

• When NOT to use it
 – Large number of columns in the data
 – Need to blend large data sets (e.g. large-scale joins)
 – Complex Machine Learning models
 – Looking for rare events

• Horror stories
 – Important decisions made based on biased samples
Different Approaches to Big Data Analytics

- Sampling
- Native Distributed Algorithms
- Grid Computing

Data Visualization, Programming
Approach 2: Grid Computing

- Sampling
- Native Distributed Algorithms
- Grid Computing
Approach 2: Grid Computing

- **Data Movement**
 - Only results are moved, data remains in Hadoop

- **Data Processing**
 - Custom single-node application running on multiple Hadoop nodes

- **Pros & Cons**
 + Hadoop is used for parallel processing in addition to using as a data source
 - Only works if data subsets can be processed independently
 - Only as good as the single-node engine, no benefit from fast-evolving Hadoop innovations
Grid computing best practices

• **When to use it**
 + Task can be performed on smaller, independent data subsets
 + Compute-intensive data processing

• **When NOT to use it**
 – Data-intensive data processing
 – Complex Machine Learning models
 – Lots of interdependencies between data subsets

• **Horror stories**
 – Grid computing job called in huge loops to manage dependencies and intermediate results
Approach 2: Grid Computing

- Sampling
- Native Distributed Algorithms
- Grid Computing

Legacy single-machine analytics engines
Approach 3: Native Distributed Algorithms
Approach 3: Native distributed algorithms

- **Data Movement**
 - Only results are moved, data remains in Hadoop

- **Data Processing**
 - Executed by native Hadoop tools: Hive, Spark, H2O, Pig, MapReduce, etc.

- **Pros & Cons**
 - Holistic view of all data and patterns
 - Highly scalable distributed processing optimized for Hadoop
 - Limited set of algorithms available, very hard to develop new algorithms
Native distributed algorithms best practices

- **When to use it**
 - Complex Machine Learning models needed
 - Lots of interdependencies inside the data (e.g. graph analytics)
 - Need to blend and cleanse large data sets (e.g. large-scale joins)

- **When NOT to use it**
 - Data is not that large
 - Sample would reveal all interesting patterns

- **Horror stories**
 - Complex ML model developed in 3 months defeated by a prototype model created in an afternoon
Approach 3: Native Distributed Algorithms

- Sampling
- Native Distributed Algorithms
- Grid Computing

Hadoop ecosystem projects
Different Approaches to Big Data Analytics

Which one to use for a given use case?

Sampling
Native Distributed Algorithms
Grid Computing
Typical projects need all three to succeed

- Sampling
- Native Distributed Algorithms
- Grid Computing
RapidMiner Predictive Analytics Platform
Single Analytics Platform to support all three

- Sampling
- Native Distributed Algorithms
- Grid Computing
The user designs the Predictive Analytics process in RapidMiner Studio. RapidMiner Radoop translates each component of the process into the appropriate language of Hadoop and pushes these instructions into Hadoop where the analytics are calculated. This enables RapidMiner to take advantage of the full computation power of Hadoop and also to extract insights from across the entire cluster, for a more complete, holistic view. Results are delivered back to RapidMiner, where they are visible in the Studio UI or can be operationalized in business applications via the RapidMiner Server Deployment tier.
ACCELERATES Time-to-Value

DATA PREP
Speed & optimize ALL data exploration, blending & cleansing tasks

MODEL & VALIDATE
Rapidly prototype and confidently validate predictive models

OPERATIONALIZE
Easily deploy & maintain models and embed analytic results

CONNECT TO ANY DATA SOURCE, ANY FORMAT, AT ANY SCALE

SUPPORT FOR ALL MAJOR BI, DATA VISUALIZATION & BUSINESS APPLICATIONS
RapidMiner is #1 OPEN SOURCE

Gartner®

Leader

2016, 2015 & 2014
Gartner Magic Quadrant for Advanced Analytics Platforms

Forrester®

Strong Performer

2015
Forrester Wave on Big Data Predictive Analytics

Howard Dresner
Dresner Advisory Services, LLC

Innovation Winner

2015
Wisdom of Crowds for Advanced & Predictive Analytics, Big Data Analytics & End-User Data Preparation

KDnuggets

#1 Open-Source Platform

Data Mining & Analytics Software Poll
Predictive Analytics Reimagined
A Modern Data Science Platform to Turn Data Into a Strategic Asset

Download RapidMiner from www.rapidminer.com

Zoltan Prekopcsak
Email: zprekopcsak@rapidminer.com
Twitter: @prekopcsak
Web: rapidminer.com

10 Milk Street, 11th Floor
Boston, MA 02108
USA

+1 617 401 7708