Domain-Driven Data

O'Reilly Software Architecture Conference

Bradley Holt, Developer Advocate
Tuesday, April 12, 2016
Build More, Grow More, Sleep More

Do more with the only fully-managed NoSQL database-as-a-service (DBaaS)

TRY NOW

Customers

GEOSPATIAL

OFFLINE FIRST

LEARN CLOUDANT
IBM Cloud Data Services

Open for Data

A comprehensive portfolio of open source data services
Big Data
Get it?
A Brief History of Data
The Relational Database

- **order**
 - `order_id`
 - `customer_id`
 - `date`

- **customer**
 - `customer_id`
 - `email_address`
 - `name`

- **line_item**
 - `order_id`
 - `item_id`
 - `price`
 - `quantity`
ACID Guarantees

Relational databases guarantee atomicity, consistency, isolation and durability
The ACID guarantees provided by relational databases were (and often still are) critical for *systems of record*.
The World Wide Web
The introduction of the Web brought a whole new type of application with different constraints than systems of record
Mobile Apps

The introduction of mobile apps added to the growing number of systems of engagement.
Changing Constraints
Always On
Big Data
The CAP Theorem

- Consistency
- Availability
- Partition Tolerance
Horizontal Scaling
Horizontal scaling is scaling through the addition of commodity hardware.
Eventual Consistency

Given no new updates, each node in a distributed system will eventually have a consistent view of the data.
Enter "Not only SQL" (NoSQL)
key-value

graph

document

...more
Key-Value Stores
Opaque data accessed through **unique keys**
Document Databases
A variation on key-value stores with strictly defined values (e.g. JSON objects)
Graph Databases
Nodes and properties of nodes connected via edges
Domain-Driven Design (DDD)
Domain-Driven Design
Tackling Complexity in the Heart of Software
Domain-Driven Design
A collaboration between domain experts and software practitioners
Complexity is in the Domain

Complexity is in the domain, **not in the technology**
Models as Tools

Models are tools used to **solve problems** within the domain.
The Map is not the Territory
Don't confuse **models** with reality itself
Building Blocks of DDD and the Life Cycle of a Domain Object
Entities

Entities are defined by their identity.
Value Objects

Value objects encode attributes that describe things
Aggregates

Aggregates group related entities to minimize complexity
Repositories

A repository provides the *illusion* of an in-memory data store
Domain Layer

Order Aggregate

<table>
<thead>
<tr>
<th>Class</th>
<th>Attributes</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>- id : int</td>
<td>+ insertOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>- customer : Customer</td>
<td>+ updateOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>- date : Date</td>
<td>+ findOrderById(id:int) : Order</td>
</tr>
<tr>
<td></td>
<td>- lineItems : LineItem[1..*]</td>
<td>+ recentOrders([limit:int]) : Order[0..*]</td>
</tr>
<tr>
<td></td>
<td>+ total() : Money</td>
<td></td>
</tr>
</tbody>
</table>

Customer

<table>
<thead>
<tr>
<th>Class</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LineItem

<table>
<thead>
<tr>
<th>Class</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infrastructure Layer

InMemoryOrderRepository

<table>
<thead>
<tr>
<th>Class</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>InMemoryOrderRepository</td>
<td>+ insertOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>+ updateOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>+ findOrderById(id:int) : Order</td>
</tr>
<tr>
<td></td>
<td>+ recentOrders(limit:int) : Order[0..*]</td>
</tr>
</tbody>
</table>

RelationalMapperOrderRepository

<table>
<thead>
<tr>
<th>Class</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelationalMapperOrderRepository</td>
<td>+ insertOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>+ updateOrder(order:Order)</td>
</tr>
<tr>
<td></td>
<td>+ findOrderById(id:int) : Order</td>
</tr>
<tr>
<td></td>
<td>+ recentOrders(limit:int) : Order[0..*]</td>
</tr>
</tbody>
</table>
Choosing the Right Data Layer
Data Store

A repository cannot abstract the constraints of your data store
Object-Relational Impédance Mismatch

Object-oriented programming and relational databases use different models
Eric Evans on NoSQL
"This is the world of NoSQL to me, that we can choose a tool that fits well with the problem we're trying to solve." –Eric Evans (author of Domain-Driven Design)
Strategic Design
Bounded Context

Bounded contexts allow different domain models to be used within different contexts.
One Data Layer Per Bounded Context

Each bounded context should have its own data layer, and should not directly access a data layer belonging to another bounded context.
Data Systems

A data layer may be a database, or it can be a data system consisting of multiple databases.
Microservices as Bounded Context

Represent each bounded context as a microservice or a cluster of microservices.
Catalog
- Document Database
- Key/Value Store
- Graph Database
- Full Text Search

Shopping Cart
- Document Database
- Key/Value Store

Orders
- Relational Database
- Big Data Analytics (e.g. Apache Spark)
Alternative Architectures
Command Query Responsibility Segregation (CQRS)

Rather than update an entity in place, CQRS provides separate read and write models.
Domain Layer

Read Model

OrderQueryHandler

- `findOrderById(id:int) : OrderDetails`
- `recentOrders([limit:int]) : OrderSummary[0..*]`

OrderDetails

- `getId() : int`
- `getCustomer() : Customer`
- `getDate() : Date`
- `getLineItems() : LineItem[1..*]`
- `getTotal() : Money`

OrderSummary

- `getId() : int`
- `getDate() : Date`
- `getTotal() : Money`

Write Model

CreateOrder

- `customer : Customer`
- `date : Date`
- `lineItems : LineItem[1..*]`

AddLineItem

- `orderId : int`
- `lineItem : LineItem`

OrderCommandHandler

- `handle(command:CreateOrder)`
- `handle(command:AddLineItem)`

@BradleyHolt
Event Sourcing
The current application state is **computed from a sequence of events**
IBM Cloud Data Services

Open for Data

A comprehensive portfolio of open source data services
Image Credits

- Open for Data Dome (outside) by Bradley Holt
- Open for Data Dome (inside) by Bradley Holt
- Brent Spiner (Data from Star Trek: The Next Generation) with Zoltar from Big by Bradley Holt, on Twitter <https://twitter.com/BradleyHolt/status/702311271002087424>
- database 2 by Tim Morgan, on Flickr <https://flic.kr/p/7Frdf>
- Hard Disk by Jeff Kubina, on Flickr <https://flic.kr/p/uS4zk>
- IBM 360 Announcement center by Robert Nix, on Flickr <https://flic.kr/p/bu2gF>
- Dialing Up Web History by Mike Licht, on Flickr <https://flic.kr/p/cacNad>
- Instagram and other Social Media Apps by Jason Howie, on Flickr <https://flic.kr/p/d41HES>

- Dynamo, un siècle de lumière et de mouvement dans l’art, 1913 – 2013 - Galeries nationales du Grand Palais - Paris - 10 avril au 22 juillet 2013 by Yann Caradec, on Flickr <https://flic.kr/p/ebpwib>
- World travel and communications recorded on Twitter by Eric Fischer, on Flickr <https://flic.kr/p/b7ntgR>
- Server grill with blue light by David Precious, on Flickr <https://flic.kr/p/cfXY1>
- Spider Web by Alden Chadwick, on Flickr <https://flic.kr/p/z4hgz1>
- database by Tim Morgan, on Flickr <https://flic.kr/p/7DUk5>
- Keys for the Stanley Hotel by Mike Silva, on Flickr <https://flic.kr/p/z6P3RM>
- paper by malik, on Flickr <https://flic.kr/p/aZjTXv>
Image Credits (cont'd)

- *Edinburgh Road Network analysis* by Steven Kay, on Flickr [https://flic.kr/p/ao19br]
- *IMG_2619* by Jason Pelletier, on Flickr [https://flic.kr/p/k7Mp2C]
- *Sounds_of_Complexity11.jpg* by Enzo Varriale, on Flickr [https://flic.kr/p/4pC77a]
- *model* by MaZzuk, on Flickr [https://flic.kr/p/3fUREM]
- *taking the subway to find the rents* by Eli Duke, on Flickr [https://flic.kr/p/2z4udd]
- *DSC_3407* by Mad House Photography, on Flickr [https://flic.kr/p/7EUfbx]
- *red numbers* by DaveBleasdale, on Flickr [https://flic.kr/p/6hkJWo]
- *Social graph* by Dmitry Grigoriev, on Flickr [https://flic.kr/p/fnzLPk]
- *Catalog* by Adam Mayer, on Flickr [https://flic.kr/p/282Bh]
- *Lina Bo Bardi, SESC Pompéia* by paulisson miura, on Flickr [https://flic.kr/p/a8dwVr]
- *Financial District Classical Building Reflection Distortion, San Francisco, California, USA* by Wonderlane, on Flickr [https://flic.kr/p/5rnE8S]
- *Eric Evans* by Oliver Gierke, on Flickr [https://flic.kr/p/9iukii]
- *rectangles* by Dean Hochman, on Flickr [https://flic.kr/p/PPaAs8]
- *Hexagons* by Henry Burrows, on Flickr [https://flic.kr/p/e9tJtU]
- *Rooted* by Anna Levinzon, on Flickr [https://flic.kr/p/5Xa8K9]
- *Rainforest Biome* by BMiz, on Flickr [https://flic.kr/p/fpLRzV]
- *rectangles-10* by Karen Cropper, on Flickr [https://flic.kr/p/wHWeTA]
- *Rusty Chain* by veggiefrog, on Flickr [https://flic.kr/p/4tfcMy]
Questions?