WebGL: the next generation

Tony Parisi
VP, Web and Open Technologies
Wevr
March, 2015
about me

CONTACT
tparisi@gmail.com
skype: auradeluxe
http://twitter.com/auradeluxe
http://www.tonyparisi.com/
http://www.learningwebgl.com/

GET GLAM
http://www.glamjs.org/
https://github.com/tparisi/glam/

GET THE BOOKS!
Learning Virtual Reality
http://www.amazon.com/Learning-Virtual-Reality-Experiences-Applications/dp/1491922834
Programming 3D Applications with HTML and WebGL
http://www.amazon.com/Programming-Applications-HTML5-WebGL-Visualization/dp/1449362966
WebGL: Up and Running
http://www.amazon.com/dp/144932357X

CREDITS
Co-creator, VRML and X3D

WORK
http://www.wevr.com/

MEETUPS
http://www.meetup.com/WebGL-Developers-Meetup/
http://www.meetup.com/Web-VR/

http://www.tonyparisi.com 3/8/16
today’s topics

- WebGL 2 – major upgrade to the standard
- WebVR – virtual reality in the browser, rendered with WebGL
- glTF – web-friendly 3D file format for use with WebGL
the 3D rendering standard

WebGL is on all desktop mobile browsers

3B seats.
Q.E.D.

http://www.tonyparisi.com
WebGL

digital marketing

http://riskeverything.nike.com/

architecture

games

http://www.youtube.com/watch?v=io5snCcQ0ss

digital art

http://cabbi.bo/enough/
major upgrade based on OpenGL ES 3.0

https://www.youtube.com/watch?v=2v6iLpY7j5M
- promotes current WebGL extensions to full features
 - multiple render targets, geometry instancing, vertex array objects, fragment depth

- adds previously unsupported ES 3.0 features
 - multisampled render buffers
 - sampler objects
 - uniform buffers
 - 3D textures
 - profiling and debugging – sync objects, query objects

- some ES 3.0 features are not supported in WebGL 2
 - mapped buffers, program binaries, drawRangeElements()
deferred rendering example

this technique is already being used in WebGL 1 with huge performance hit – three or more render targets. with multiple render targets you do the draw once instead of three or more times...

Color, Depth, and Normal buffers. (Images by astrofa, via Wikimedia Commons.)

Excellent example in WebGL1... would be even faster in V2!

http://marcinignac.com/blog/deferred-rendering-explained/demo/
development status

- enable WebGL 2 in Firefox

 [link](https://wiki.mozilla.org/Platform/GFX/WebGL2)

- enable WebGL 2 in Chrome (Canary Windows/OSX, Dev Channel Linux)

 Run from command line with [---enable-unsafe-es3-apis](https://www.khronos.org/registry/webgl/specs/latest/2.0/)

- specification

 [link](https://www.khronos.org/registry/webgl/specs/latest/2.0/)

- live demo

 [link](http://toji.github.io/webgl2-particles/)
WebVR: virtual reality in the browser

- experimental WebVR API
- Head-tracking and fullscreen VR support now in browser builds (nightly/dev channels)
- awesome VR without big app downloads and installs!!!

http://mozvr.github.io/webvr-spec/
var self = this;
var vrDisplay;

navigator.getVRDisplays().then(gotVRDisplays);
function gotVRDisplays (displays) {
 if (displays.length > 0) {
 vrDisplay = displays[0];

 self.left = vrDisplay.getEyeParameters("left");
 self.right = vrDisplay.getEyeParameters("right");
 self.vrDisplay = vrDisplay;
 }
}
the WebVR API (2)

set up to present to the VR Display

```
someButton.addEventListener('click', onStartPresent);
function onStartPresent () {
  vrDisplay.requestPresent({ source : webGLCanvas });
}
```

VR presentation must be initiated by user action e.g. mouse click

the WebGL canvas contains the rendered content to be presented on the VR display
WebVR introduces a new version of requestAnimationFrame() specifically for VR devices, making >60FPS rendering possible!

```javascript
vrDisplay.requestAnimationFrame(runloop);
function runloop() {
  // set up for the next frame
  vrDisplay.requestAnimationFrame(runloop);

  // render the content
  var pose = vrDisplay.getPose();
  if (vrDisplay.isPresenting) {
    renderScene(pose, "left");
    renderScene(pose, "right");
  }

  vrDisplay.submitFrame(pose);
}
```

- get HMD position/orientation
- render scene once for each eye
- submit rendered content to the HMD
WebVR and mobile

○ Google Cardboard Showcase
 ○ Mobile Chrome http://g.co/chromevr

○ two ways to implement
 ○ for existing mobile browsers – render WebGL Side-by-Side stereo (no need to query devices), existing fullscreen and browser DeviceOrientation API
 ○ new WebVR API supported in betas of FF and Chrome
 https://drive.google.com/folderview?id=0BzudLt22BqGRbW9WTHMtOWMzNjQ

○ WebVR Polyfill – works across WebVR API and Cardboard styles
 https://github.com/borismus/webvr-polyfill
WebVR status and resources

- 1.0 specification – NOT a standard - still experimental

 http://mozvr.github.io/webvr-spec/

- Chromium builds

 https://drive.google.com/a/wevr.com/folderview?id=0BzudLt22BqGRbW9WTHMtOWMzNjQ&usp=sharing#list

- Brandon Jones’ blog posting

- Casey Yee’s introduction to WebVR

 https://hacks.mozilla.org/2016/03/introducing-the-webvr-1-0-api-proposal/

- mailing List

 web-vr-discuss@mozilla.org

- slack channel

 https://webvr.slack.com
gl Transmission Format
a “JPEG for 3D”

https://github.com/KhronosGroup/glTF

- runtime asset format for WebGL, OpenGL ES, and OpenGL applications
- compact representation for download efficiency
- loads quickly into memory
 - JSON for scene structure and other high-level constructs
 - GL native data types require no additional parsing
- full-featured
 - 3D constructs (hierarchy, cameras, shaders, animation, lights and standard materials via extensions)
 - full support for shaders and arbitrary materials
- runtime-neutral
 - can be created and used by any tool, app or runtime
the structure of a glTF file

```json
"nodes": {
  "LOD3sp": {
    "children": [],
    "matrix": [
      // matrix data here
    ],
    "meshes": [
      "LOD3spShape-lib"
    ],
    "name": "LOD3sp"
  },
  ...,

  "meshes": {
    "LOD3spShape-lib": {
      "name": "LOD3spShape",
      "primitives": [
        {
          "attributes": {
            "NORMAL": "accessor_25",
            "POSITION": "accessor_23",
            "TEXCOORD_0": "accessor_27"
          },
          "indices": "accessor_21",
          "material": "blinn3-fx",
          "primitive": 4
        }
      ]
    },
    "buffers": {
      "duck": {
        "byteLength": 102040,
        "type": "arraybuffer",
        "uri": "duck.bin"
      }
    }
  }
},
```

scene structure defined as hierarchy of nodes

meshes and other visual types access low-level data

rich data e.g. vertices and animations stored in binary files
three.js Loader
https://github.com/mrdoob/three.js/

Babylon.js Loader (in development)
http://www.babylonjs.com/

It's the native format!
http://cesiumjs.org/

collada2gltf converter
https://github.com/KhronosGroup/gltF
Online drag and drop COLLADA to glTF converter
http://cesiumjs.org/convertmodel.html

FBX to glTF Converter
Drag and drop convertor coming
http://gltf.autodesk.io/

PIPELINE TOOLS

Microsoft
WebGL ecosystem

game engines/IDEs
- Goo Engine *
- Verold http://verold.com/ *
- Turbulenz https://turbulenz.com/
- Sketchfab https://sketchfab.com/
- Unreal *
 https://www.unrealengine.com/
- Unity *
 http://unity3d.com/#unity-5

* not open source

scene graph libraries/page frameworks
- Three.js
 http://threejs.org/
- SceneJS
- BabylonJS
- GLAM
 https://github.com/tparisi/glam
- A-Frame
 https://aframe.io/
WebGL: the next generation

Tony Parisi
VP, Web and Open Technologies
Wevr
March, 2015