
Go Performance Tutorial
Josh Bleecher Snyder
Braintree/PayPal

Plan

Introduction and philosophy

Tools: Benchmarks, profiles

Habits and techniques: string/[]byte, memory, concurrency

Advanced tools and techniques

Other kinds of optimization

Wrap-up and stump the chump

10.10.32.101 (http://10.10.32.101)

Introduction and philosophy

Write simple, clear code

Usually the fastest anyway

codereview.appspot.com/131840043 (https://codereview.appspot.com/131840043)

Easy to see optimization opportunities

Compiler and runtime optimized for normal code

Take it easy on abstraction (reflection, interfaces)

"All problems in computer science can be solved by another level of indirection, except
of course for the problem of too many indirections." - David Wheeler

Write good tests and use version control

Enables experimentation.

"If you're not going to get the right answer, I don't see the point. I can make things very
fast if they don't have to be correct." - Russ Cox

Develop good habits

"Programmers waste enormous amounts of time thinking about, or worrying about,
the speed of noncritical parts of their programs, and these attempts at efficiency
actually have a strong negative impact when debugging and maintenance are
considered. We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%." - Donald Knuth

Know thy tools, at all levels

Can you cheat? Does it matter?

Algorithms

Language

Benchmarking and profiling

Machine and OS: Disk vs network vs memory

"People who are more than casually interested in computers should have at least

some idea of what the underlying hardware is like. Otherwise the programs they write

will be pretty weird." - Donald Knuth

The easiest wins around

Use the most recent release of Go!

Use the standard library.

Use more hardware.

Benchmarking

Hello, benchmarks

Demo: package fib

Tour of testing.B and 'go test' flags

Demo: word length count

Comparing benchmarks

benchcmp

go get -u golang.org/x/tools/cmd/benchcmp

benchviz

go get -u github.com/ajstarks/svgo/benchviz

benchstat

go get -u rsc.io/benchstat

Benchmarking concurrent code

Demo: ngram

Profiling

Hello, profiling

Where have all the cycles gone?

Support built into the runtime

go tool pprof, graphviz

OS X sadness

CPU profiling

Demo: fib

Memory profiling

Demo: ascii

Profiling gotchas

Don't run multiple profilers at once.

Don't run tests when profiling.

If the output doesn't make sense, poke around or ask for help.

Block profiling

Demo: ngram

Other kinds of profiling

In package runtime/pprof:

goroutine: helpful for finding sources of leaking goroutines

threadcreate: helpful for debugging runaway thread creation (usually syscalls or
cgo)

Basic memory stats available in package runtime: ReadMemStats

golang.org/pkg/runtime/#MemStats (https://golang.org/pkg/runtime/#MemStats)

Whole program profiling

Set up first thing in func main.

Use runtime and runtime/pprof packages...but it is a pain.

Dave Cheney made a nice helper package:

go get -u github.com/pkg/profile

godoc.org/github.com/pkg/profile (https://godoc.org/github.com/pkg/profile)

Monitoring live servers

Cheap enough to do in production!

And easy, using net/http/pprof.

import _ "net/http/pprof"

Use pprof to view CPU:

go tool pprof -pdf http://localhost:3999/debug/pprof/profile > o.pdf && open o.pdf

Heap:

go tool pprof http://localhost:3999/debug/pprof/heap

Goroutines:

go tool pprof http://localhost:3999/debug/pprof/goroutine

See net/http/pprof docs.

Monitoring live servers

Demo: present

localhost:3999/debug/pprof (http://localhost:3999/debug/pprof)

go tool pprof -pdf http://localhost:3999/debug/pprof/goroutine > o.pdf && open o.pdf

Oh goodness!

github.com/golang/go/issues/11507 (https://github.com/golang/go/issues/11507)

Protecting the net/http/pprof endpoints

net/http/pprof registers endpoints with http.DefaultServeMux.

So don't use http.DefaultServeMux.

serveMux := http.NewServeMux()

// use serveMux to serve your regular website

pprofMux := http.NewServeMux()

pprofMux.HandleFunc("/debug/pprof/", pprof.Index)

pprofMux.HandleFunc("/debug/pprof/cmdline", pprof.Cmdline)

pprofMux.HandleFunc("/debug/pprof/profile", pprof.Profile)

pprofMux.HandleFunc("/debug/pprof/symbol", pprof.Symbol)

// use pprofMux to serve the pprof handles

Or use a single non-default ServeMux but insert http handler middleware.

Execution tracing

New as of Go 1.5! Google for "Go execution tracer" to see the design doc.

A few rough edges still.

Incredibly detailed and powerful, with all the good and bad that that brings.

Execution tracing

Demo: ngram

Techniques and habits

string and []byte

string and []byte

Common source of performance problems.

Easy to learn good habits.

Helps to know what's happening under the hood.

Under the hood

string

basic type

interpreted as UTF-8

immutable

[]byte

just another slice type

no particular interpretation

mutable

func set() {
 var b []byte
 b[0] = 0
 _ = b
} Run

Correct conversions are expensive

Above all, the compiler and runtime must be correct.
Speed is a bonus.

In the general case, converting between string and []byte requires an alloc and a copy.

func BenchmarkConvert(b *testing.B) {
 var s string
 buf := bytes.Repeat([]byte("abcdef"), 50)
 b.ResetTimer()
 for i := 0; i < b.N; i++ {
 s = string(buf)
 }
 _ = s
} Run

Shrink and grow

string

slicing is very cheap and safe

concatenation is expensive (alloc + copy x 2)

[]byte

slicing is very cheap but not obviously safe

append is sometimes expensive (sometimes alloc, always copy x 1, sometimes
copy x 2)

Good habits

Live in just one world (modulo code clarity and correctness).

Convert as late as possible.

Pay attention to concatenation, particularly in loops.

bytes.Buffer

Use a bytes.Buffer to build strings.

func BenchmarkConcat(b *testing.B) {
 for i := 0; i < b.N; i++ {
 var s string
 for j := 0; j < 100; j++ {
 s += "a"
 }
 _ = s
 }
}
func BenchmarkBuffer(b *testing.B) {
 for i := 0; i < b.N; i++ {
 var buf bytes.Buffer
 for j := 0; j < 100; j++ {
 buf.WriteByte('a')
 }
 _ = buf.String()
 }
} Run

APIs

Use dedicated APIs:

bytes and strings packages

"io.Writer".Write vs io.WriteString

"bufio.Scanner".Bytes vs "bufio.Scanner".Text

"bytes.Buffer".Bytes vs "bytes.Buffer".String

Related: Implement WriteString for your io.Writers:

func WriteString(s string) (n int, err error)

Avoid building strings

If the set of choices is small, pick a string rather than building it.

(Or use stringer: golang.org/x/tools/cmd/stringer.)

func BenchmarkConstruct(b *testing.B) {
 for i := 0; i < b.N; i++ {
 s = fmt.Sprintf("foo-%d", i%3)
 }
}
func BenchmarkPick(b *testing.B) {
 for i := 0; i < b.N; i++ {
 switch i % 3 {
 case 0:
 s = "foo-0"
 case 1:
 s = "foo-1"
 case 2:
 s = "foo-2"
 }
 }
} Run

Order of operations

Convert last (usually).

For example, slice after converting.

If you're slicing multiple times, there are trade-offs: Multiple small alloc+copy vs one
large monolithic chunk of memory.

var s = strings.Repeat("abc", 100)
var p []byte

func BenchmarkSliceConvert(b *testing.B) {
 for i := 0; i < b.N; i++ {
 p = []byte(s[3:6])
 }
}
func BenchmarkConvertSlice(b *testing.B) {
 for i := 0; i < b.N; i++ {
 p = []byte(s)[3:6]
 }
} Run

Easy on the Sprintf

Use concatenation and strconv instead of fmt.Sprintf for simple things.

func BenchmarkStrconv(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = strconv.Itoa(500)
 }
}
func BenchmarkSprintf(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = fmt.Sprintf("%d", 500)
 }
} Run

API design

Design your APIs to allow reduced garbage.

Provide []byte and string variants.

Use io.Reader and io.Writer instead of buffers.

BYO buffer.

Good:

Read(p []byte) (n int, err error)

Bad:

Read(n int) (p []byte, err error)

Techniques

Reuse buffers.

Take advantage of compiler optimizations.

Intern strings.

Reuse buffers

var pool = sync.Pool{New: func() interface{} { return new(bytes.Buffer) }}
var p = bytes.Repeat([]byte{'a'}, 100)

func BenchmarkReuse(b *testing.B) {
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 buf := pool.Get().(*bytes.Buffer)
 buf.Write(p)
 _ = buf.String()
 buf.Reset()
 pool.Put(buf)
 }
 })
}
func BenchmarkNoReuse(b *testing.B) {
 b.RunParallel(func(pb *testing.PB) {
 for pb.Next() {
 var buf bytes.Buffer
 buf.Write(p)
 _ = buf.String()
 }
 })
}

Run

Convert last

Pop quiz: How many allocs/op in this benchmark?

func BenchmarkConvert(b *testing.B) {
 p := bytes.Repeat([]byte{'a'}, 10)
 var n int
 b.ResetTimer()
 for i := 0; i < b.N; i++ {
 s := string(p)
 n += len(s)
 }
 _ = n
} Run

Compiler magic

Conversion optimizations in Go 1.5 include:

map keys

range expressions

concatenation

comparisons

Convert as late as possible to enable them to work.
(Future work may change that.)

More are possible. Those that work well on normal code may eventually be
implemented.

Map keys

The map key optimization is particularly interesting.

var p = bytes.Repeat([]byte{'a'}, 100)
var m = make(map[string]bool)

func BenchmarkMapKey1(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = m[string(p)]
 }
}
func BenchmarkMapKey2(b *testing.B) {
 for i := 0; i < b.N; i++ {
 s := string(p)
 _ = m[s]
 }
} Run

Interning strings

var interned = make(map[string]string)

func intern(b []byte) string {
 s, ok := interned[string(b)] // does not allocate!
 if ok {
 return s
 }
 s = string(b)
 interned[s] = s
 return s
}

var p = bytes.Repeat([]byte{'a'}, 100)

func BenchmarkConvert(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = string(p)
 }
}
func BenchmarkIntern(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = intern(p)
 }
} Run

Caution

Be careful with interning!

Advanced technique. Use with caution and only when necessary.

Depends on compiler version.

Manual memory management! Ewwwwww.

Not thread safe. (But see github.com/josharian/intern for a hack.)

Optimizing memory usage

What is allocation?

Making a place to put stuff.

You can't avoid all allocation. That's ok!

Why it matters: allocation, zeroing/copying, GC, limited resource, impact on caches.

Number of allocations vs size of allocation.

What allocates?

Lots of things, but it varies by compiler.
In practice, there are no strict rules.

Common sources of allocations are:

Data growth (append, concatenation, map assignment, stacks)

new, make, and &

string/[]byte conversion

Interface conversions

Closures

Develop good habits, profile, and benchmark.

Escape analysis

Heap vs stack

Subtle, interacts with growable stacks and GC

Stack pressure vs heap

-gcflags=-m

Mostly, just know that it exists and what it is.

Good habits

Avoid unnecessary data growth.

Avoid unnecessary string/[]byte conversions.

Design APIs that allow re-use.

Use values where you can.

Avoid gratuitous boxing, reflection, and indirection.

Unnecessary data growth

Buffer:

buf, err := ioutil.ReadAll(r)
// check err
var x T
err = json.Unmarshal(buf, &x)
// check err

Stream:

dec := json.NewDecoder(r)
var x T
err := dec.Decode(&x)
// check err

Unnecessary/deep recursion

Stacks take memory too. Stack growth is an alloc+copy+process.

(Most data growth is alloc+copy.)

API design

Use io.Reader and io.Writer.

Also, io.Reader is a fine example itself!

type Reader interface {
 Read(p []byte) (n int, err error)
}

It is hard to anticipate your users' needs. Give them the tools to be efficient if they need
it.

Use values

Value:

type OptBool uint8

const (

 Unset = OptBool(iota)

 SetFalse

 SetTrue

)

Pointer:

type OptBool *bool

But take care with large values.

var a [10000]int{}

for _, i := range a {

}

fmt.Println(a)

Go easy on the abstraction

Reflect allocates heavily.

Most interface conversions allocate.

Creating closures usually allocates.

Techniques

Provide initial capacity estimates for data structures.

Trade off allocation size and number of allocations.

Reuse objects. Maintain a free list or use sync.Pool.

Steal ideas from the standard library.

Initial capacity estimates

Delayed/multiple allocs vs exactly one alloc

const size = 100

func BenchmarkDelayedAlloc(b *testing.B) {

 for i := 0; i < b.N; i++ {

 var s []int

 for i := 0; i < size; i++ {

 s = append(s, i)

 }

 sink = s

 }

}

func BenchmarkOneAlloc(b *testing.B) {

 for i := 0; i < b.N; i++ {

 s := make([]int, 0, 100)

 for i := 0; i < size; i++ {

 s = append(s, i)

 }

 sink = s

 }

} Run

Pre-allocate backing array

type Buffer struct {

 buf []byte

 off int

 runeBytes [utf8.UTFMax]byte

 bootstrap [64]byte

 lastRead readOp

}

runeBytes avoids allocation during WriteRune:

utf8.EncodeRune(b.runeBytes[0:], r)

bootstrap avoids allocation for small buffers:

b.buf = b.bootstrap[0:]

Reuse objects

Local re-use is better:

buf := make([]byte, 1024)
for {
 n, err := r.Read(buf)
 // use err, n, buf
 // look out: buf's contents will be overwritten in the next Read call
}

Sometimes there's no context (type or scope) to allow re-use. Enter sync.Pool:

for {
 buf := pool.Get().([]byte)
 // use buf
 // optional: clear buf for safety
 for i := range buf {
 buf[i] = 0
 }
 pool.Put(buf)
}

Struct layout

Go guarantees struct field alignment.

type Efficient struct {
 a interface{}
 b *int
 c []int
 d uint16
 e bool
 f uint8
}

type Inefficient struct {
 e bool
 a interface{}
 f uint8
 b *int
 d uint16
 c []int
}

var e Efficient
var i Inefficient
fmt.Println(unsafe.Sizeof(e), unsafe.Sizeof(i)) // 28 36

Struct layout

cmd/wasted:

golang.org/cl/2179 (https://golang.org/cl/2179)

Unlikely to happen automatically:

golang.org/issue/10014 (https://golang.org/issue/10014)

"No Go compiler should probably ever reorder struct fields. That seems like it is trying
to solve a 1970s problem, namely packing structs to use as little space as possible. The
2010s problem is to put related fields near each other to reduce cache misses, and
(unlike the 1970s problem) there is no obvious way for the compiler to pick an optimal
solution. A compiler that takes that control away from the programmer is going to be
that much less useful, and people will find better compilers." - Russ Cox

Optimizing concurrent programs

Optimizing concurrent programs

Concurrency correctness is hard, even with Go.

Habits

Use mutexes instead of channels for simple shared state.

Minimize critical sections.

Don't leak goroutines.

Gate access to shared resources, particularly the file system.

Mutexes and channels

Mutexes are good for mutual exclusion, like simple shared state. They are fast and
simple in such cases.

Channels are for everything else: Flow control, communication, coordination, select.

Minimize critical sections

Separate work that requires shared state from work that does not.

Only hold the lock when you really need it. Refactor as needed.

Before:

func (t *T) Update() {
 t.Lock()
 defer t.Unlock()
 // expensive work that can be done independently
 // update shared state
}

After

func (t *T) Update() {
 // expensive work that can be done independently
 t.Lock()
 defer t.Unlock()
 // update shared state
}

Don't leak goroutines

When you start a new goroutine, pause to ask when it will/how it will complete.

func doh(c chan int) {
 go func() {
 for i := range c {
 // use i
 }
 }()
 // who closes c? who calls doh?
}

Goroutines are so cheap you might not notice leaks quickly.

Profile or manually inspect the result of a SIGQUIT.

Gate access to shared resources

It's easy to thrash the filesystem, make lots of threads, and create churn in the
scheduler. It's also easy to prevent.

type gate chan bool

func (g gate) enter() { g <- true }

func (g gate) leave() { <-g }

type gatefs struct {

 fs vfs.FileSystem

 gate

}

func (fs gatefs) Open(p string) (vfs.ReadSeekCloser, error) {

 fs.enter()

 defer fs.leave()

 // ...

 return gatef{file, fs.gate}, nil

}

var fsgate = make(gate, 8)

Use buffered I/O

Every read or write to a file corresponds to a system call. These are relatively

expensive, particularly in high numbers.

The bufio package makes buffered I/O easy. Use it.

f, err := os.Open("abc.txt")

// handle err

r := bufio.NewReader(f)

Techniques

sync.RWMutex is only sometimes better than sync.Mutex.

Use buffered channels.

Provide backpressure or dropping.

Partition shared data structures.

Batch work to amortize cost of lock acquisition.

Use sync/atomic.

Cooperate with the scheduler

Avoid false sharing by padding data structures.

sync.RWMutex vs sync.Mutex

sync.RWMutex does strictly more work than sync.Mutex and has more complicated
semantics.

sync.RWMutext can help a lot, but it can also hurt. Profile and/or benchmark.

Use buffered channels

Buffered and unbuffered channels have different semantics and synchronization
guarantees.

Buffered channels are much cheaper, if both semantics work for you.

Provide backpressure or dropping

Critical for operational stability of distributed services, but also useful for concurrency.

Partition shared data structures

Before:

type Counter struct {
 mu sync.Mutex
 m map[string]int
}

After:

const shards = 16

type Counter struct {
 mu [shards]sync.Mutex
 m [shards]map[string]int
}

Can reduce contention.

Adds cost of hashing, increases data structure size, and depends on distribution of
data. Measure with real world data. rand.Zipf can be helpful for benchmarks.

Batch work

// consumer
var sum int
for i := range c {
 sum += i
}

// producer before
for !done {
 sum := count(stuff)
 c <- sum
}

// producer after
for !done {
 sum := 0
 for i := 0; i < 16; i++ {
 sum += count(stuff)
 }
 c <- sum
}

Can dramatically reduce contention, but not always applicable. Can introduce delays
due to batching.

atomic.Value

var (
 configmu sync.Mutex // protects configvalue
 configvalue *atomic.Value // value of map[string]string
)

func config() map[string]string {
 return configvalue.Load().(map[string]string)
}

func set(key, val string) {
 configmu.Lock()
 defer configmu.Unlock()
 old := config()
 m := make(map[string]string, len(old)+1)
 for k, v := old {
 m[oldk] = oldv
 }
 m[k] = v
 configvalue.Store(m)
}

For frequently read but infrequently written data structures. Requires copy-on-write
and writer synchronization (or a single writer). Danger of logical races.

atomic int and pointer operations

var count uint32

func inc() {
 atomic.AddUint32(&count, 1)
}

func get() uint32 {
 return atomic.LoadUint32(&count)
}

Cheapest form of concurrency-safety available in Go. Great caution required; very easy
to misuse in subtle ways!

Mostly helpful for cheap, scalable counters.

If you use atomic.* with a value anywhere, you must use it everywhere!

Extra special care required when using 64 bit integer sizes on 32 bit platforms due to
alignment requirements.

Cooperative scheduling

Go scheduling is currently cooperative. It mostly just works, except for tight loops with
no function calls.

var x int
for i := 0; i < 1<<30; i++ {
 x = x ^ i
}

Solution: Use runtime.Gosched()

var x int
for i := 0; i < 1<<30; i++ {
 x = x ^ i
 if i & 0xFFFF == 0xFFFF {
 runtime.Gosched()
 }
}

Avoid false sharing

Usually solvable by rearrangement or padding.

type T [1024]Padded

type Padded struct {
 mu sync.Mutex
 x *X
 _ [128]byte
}

Diagnose first; the medicine is bitter.

Advanced tools and techniques

Advanced tools and techniques

Compiler flags

Runtime flags and calls

Assembly and cgo

Code generation

Micro-optimizations

Compiler flags

Use:

go build -gcflags=-S pkg

Or:

go tool compile -S a.go b.go c.go

Important flags:

-h help
-S print assembly listing
-m print optimization decisions such as escape analysis
-l turn off inlining, repeat to make inlining more aggressive
-N disable optimizations
-B disable bounds checking

Demo

GODEBUG and GOGC

Sample GODEBUG use:

GODEBUG=scheddetail=1,schedtrace=1000 go run x.go

Useful GODEBUG variables for performance investigation:

allocfreetrace=1: print all allocs and frees (it's a lot!)

gctrace=1, gctrace=2: print GC activity

schedtrace=X: print scheduler state every X ms

scheddetail=1: print detailed scheduler state

Sample GOGC use:

GOGC=off go run x.go

Or:

runtime.SetGCPercent(-1) // -1 for off, 50 for aggressive GC, 100 for default, 200 for lazy GC

cgo

Plenty of rope.

overhead: stack switch and calling convention change

takes up a thread

medium chunks of work

cross-compilation is not trivial

Assembly

Upgrade from rope to gun.

overhead: function call

dangerous

basically undocumented

small chunks of work (but not individual instructions)

not subject to Go 1 guarantee

go vet is helpful

Useful when there is no other way.

Code generation

Helpful for:

Avoiding the need for an abstraction layer (yes yes, generics)

Unrolling loops or calculations

Generating pre-calculated tables

Generating efficient code that is hard to read or maintain

const _Num_name = "OneTwo"

var _Num_index = [...]uint8{0, 3, 6}

func (i Num) String() string {

 if i < 0 || i+1 >= Num(len(_Num_index)) {

 return fmt.Sprintf("Num(%d)", i)

 }

 return _Num_name[_Num_index[i]:_Num_index[i+1]]

}

Micro-optimizations

Knuth alert!

arrays instead of maps for lookups with small integer keys

var a = [10]string{2: "even prime", 9: "maybe prime"}
var m = map[int]string{2: "even prime", 9: "maybe prime"}

slice instead of map for very small quantities of data

manually unwind instead of using defer

index into slice instead of pointer in giant data structures

Compiler dependent:

optimized memclear

rotate instruction: i<<13 | i>>(64-13)

Other kinds of optimization

Binary size

Build time

Binary size

go tool nm

Helpful for finding large static data:

package main

var a [100000]int

func main() {
 _ = a[0] // prevent the linker from dropping a
}

Result:

$ go build bigarray.go && go tool nm -size -sort=size bigarray | head -n 4
 d47c0 800000 B main.a
 86140 152299 R runtime.pclntab
 4d220 124312 T runtime.etext
 4d220 124312 R type.*

Millions of strings

The only way to get millions of strings is to generate them. If you're generating that
many, generate them as a single string and slice as needed.

var nums = [...]string{"0", "1", "2", "3", "4", ..., "99999"}

Binary size: 3471840 bytes

var nums = "0123...99999"

Binary size: 1558960 bytes

ldflags

Normal:

$ go build helloworld.go && stat -f "%N: %z bytes" helloworld
helloworld: 2344944 bytes

Without DWARF:

$ go build -ldflags=-w helloworld.go && stat -f "%N: %z bytes" helloworld
helloworld: 1746928 bytes

But you lose debug information.

Build time

go install

go build builds and discards.
go install build and keeps.

Use go install.

Enable caching of stable code

The unit of compilation is the package.

If you have a large, stable chunk of code (frequently a generated file containing assets),
put it in a different package than high churn code. Use internal packages if you're
worried about API visibility.

Split up giant functions

This oughtn't matter. It does.

Giant static data and tables can generate giant functions. (See previous slide.)

One hack: Use multiple init functions.

Wrap-up

Want more?

Read the standard library

Blog posts by Dmitry Vyukov and Russ Cox

Lurk on golang-codereviews@googlegroups.com (or even better, don't just lurk!)

Ask questions on golang-nuts

Experiment!

Experiment where?

Profile your own code. (But know when to stop.)

Pick an open source project. Find and fix a significant performance problem. (For all
but the largest projects, there's usually at least one.)

Futz around with the standard library. (But remember that clarity and
maintainability trumps speed.)

Reminders

Write simple, clear code

Write tests and use version control

Cheat (solve an easier problem instead)

Develop good habits

Know your tools and use them

Stump the chump

Thank you

Josh Bleecher Snyder
Braintree/PayPal
josharian@gmail.com (mailto:josharian@gmail.com)

@offbymany (http://twitter.com/offbymany)

