EXPLORING THE
ARCHITECTURE OF
THE MEAN STACK

MongoDB, Express)S, Angular]S, Node)S

Web: http://thirstyhead.com

http://my.thirstyhead.com/
http://twitter.com/scottdavis99
mailto:scott@thirstyhead.com
http://thirstyhead.com/

(/ ThirstyHead.com

GIS For Web Developers

Adding Where to Your

Web Appl SCOtt D&V 1S
'ebh Applications
@scottdavis99

Groovy Recipes

Greasing
the Wheels
of Java

; “ae b

Getting Started with Grails
Second Edition

A modern web tamewarh lor the Java platierm

InfoQ

IBM ~ English ~

dGVG'OprWOI‘kS Technical topics Evaluation software = Community Events

developerWorks > Technical topics > Web development > Technical library

Mastering MEAN: Introducing the MEAN stack

Develop modern, full-stack, twenty-first-century web projects from end-to-end

Build a modern web application with MongoDB, Express, AngulardS, and Node.js in this six-
part series by web development expert Scott Davis. This first installment includes a demo,
sample code, and full instructions for creating a basic MEAN application. You'll also learn
about Yeoman generators that you can use to bootstrap a new MEAN application quickly and
easily.

- View more content in this series PDF (721 KB) ¥ Comments

share: i £4 [*§

In his 2002 book, David Weinberger described the burgeoning web's content as a collection of Small
Pieces Loosely Joined. That metaphor stuck with me, because it's easy to get tricked into thinking of the
web as a monolithic technology stack. Actually, every website you visit is the product of a unique mixture
of libraries, languages, and web frameworks.

http://www.ibm.com/developerworks/library/wa-mean1/index.html

MongoDB === Persistence

Linux »» NodeJ$

Apache = Express)$
MySQL = MongoDB

http://obviousplant.tumblr.com/post/112604964273/here-are-some-of-my-top-wine-picks

Relational database

From Wikipedia, the free encyclopedia

A relational database is a digital database whose organization is based on the relational model of data,
as proposed by E.F. Codd in 1970. This model organizes data into one or more tables (or "relations") of
rows and columns, with a unique key for each row. Generally, each entity type described in a database
has its own table, the rows representing instances of that entity and the columns representing the
attribute values describing each instance. Because each row in a table has its own unique key, rows in
other tables that are related to it can be linked to it by storing the original row's unique key as an attribute
of the secondary row (where it is known as a "foreign key"). Codd showed that data relationships of
arbitrary complexity can be represented using this simple set of concepts.

Prior to the advent of this model, databases were usually hierarchical, and each tended to be organized
with a unique mix of indexes, chains, and pointers. The simplicity of the relational model led to its soon
becoming the predominant type of database.

The various software systems used to maintain relational databases are known as Relational Database
Management Systems (RDBMS).

Virtually all relational database systems use SQL (Structured Query Language) as the language for
querying and maintaining the database.

http://en.wikipedia.org/wiki/Relational_database

select * from books;

Object-relational mapping

From Wikipedia, the free encyclopedia

Object-relational mapping (ORM, O/RM, and O/R mapping) in computer science is a programming
technique for converting data between incompatible type systems in object-oriented programming
languages. This creates, in effect, a "virtual object database" that can be used from within the
programming language. There are both free and commercial packages available that perform object-
relational mapping, although some programmers opt to create their own ORM tools.

In object-oriented programming, data management tasks act on object-oriented (OO) objects that are

almost always non-scalar values. For example, consider an address book entry that represents a single
person along with zero or more phone numbers and zero or more addresses. This could be modeled in
an object-oriented implementation by a "Person object" with attributes/fields to hold each data item that

the entry comprises: the person's name, a list of phone numbers, and a list of addresses. The list of
phone numbers would itself contain "PhoneNumber objects" and so on. The address book entry is
treated as a single object by the programming language (it can be referenced by a single variable
containing a pointer to the object, for instance). Various methods can be associated with the object, such
as a method to return the preferred phone number, the home address, and so on.

However, many popular database products such as structured query language database management
systems (SQL DBMS) can only store and manipulate scalar values such as integers and strings
organized within tables. The programmer must either convert the object values into groups of simpler
values for storage in the database (and convert them back upon retrieval), or only use simple scalar
values within the program. Object-relational mapping is used to implement the first approach.["!

http://en.wikipedia.org/wiki/Object-relational_mapping

"ORM (Object-Relational Mapping)
is the Vietnam of Computer Science.”

Ted Neward

¥ HIBER

eclipse)link
(@) penJPA

\’A\’A\.A\“h.\" e

»
ALAND

http://mrg.bz/Y8guly

SAse s L

| LOCAL TRAFFIC ONLY |

e il 1 |

NoSQL

From Wikipedia, the free encyclopedia

A NoSQL (often interpreted as Not only SQL['!2]) database provides a mechanism for storage and
retrieval of data that is modeled in means other than the tabular relations used in relational databases.
Motivations for this approach include simplicity of design, horizontal scaling, and finer control over
availability. The data structures used by NoSQL databases (e.g. key-value, graph, or document) differ
from those used in relational databases, making some operations faster in NoSQL and others faster in
relational databases. The particular suitability of a given NoSQL database depends on the problem it
must solve.

NoSQL databases are increasingly used in big data and real-time web applications.®l NoSQL systems
are also called "Not only SQL" to emphasize that they may also support SQL-like query languages.
Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of availability
and partition tolerance. Barriers to the greater adoption of NoSQL stores include the use of low-level
query languages, the lack of standardized interfaces, and huge investments in existing SQL.[4! Most
NoSQL stores lack true ACID transactions, although a few recent systems, such as FairCom c-treeACE,
Google Spanner (though technically a NewSQL database), FoundationDB and OrientDB have made
them central to their designs.

http://en.wikipedia.org/wiki/NoSQL

[NoSQL]

CouchDB
re aX

D 4
& Cassandra

Carlo Strozzi used the term NoSQL in 1998 to name his lightweight, open-source relational database
that did not expose the standard SQL interface.®! Strozzi suggests that, as the current NoSQL
movement "departs from the relational model altogether; it should therefore have been called more
appropriately '"NoREL",[! referring to 'No Relational'.

Eric Evans reintroduced the term NoSQL in early 2009 when Johan Oskarsson of Last.fm organized an
event to discuss open-source distributed databases.”! The name attempted to label the emergence of
an increasing number of non-relational, distributed data stores. Most of the early NoSQL systems did not
attempt to provide atomicity, consistency, isolation and durability guarantees, contrary to the prevailing
practice among relational database systems.[®!

Types of NoSQL databases [edi]

There have been various approaches to classify NoOSQL databases, each with different categories and
subcategories. Because of the variety of approaches and overlaps it is difficult to get and maintain an
overview of non-relational databases. Nevertheless, a basic classification is based on data model. A few
examples in each category are:

e Column: Accumulo, Cassandra, Druid, HBase, Vertica

« Document:Lotus Notes, Clusterpoint, Apache CouchDB, Couchbase, MarkLogic, MongoDB,
OrientDB

» Key-value: CouchDB, Dynamo, FoundationDB, MemcacheDB, Redis, Riak, FairCom c-treeACE,
Aerospike, OrientDB, MUMPS

« Graph: Allegro, Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog

» Multi-model: OrientDB, FoundationDB, ArangoDB, Alchemy Database, CortexDB

http://en.wikipedia.org/wiki/NoSQL

Row/Column
oriented

SQL

INSERT, SELECT,
UPDATE, DELETE

Document
oriented

JavaScript

POST, GET,
PUT, DELETE

(REST)

Point-+H
Point #1

In software development, the
order of operations should be
solution " tools

Relational databases are one

_ of the biggest golden hammers

in software development
today.

Strong vs. Weak Typing

“If this is coffee, please
bring me some tea;

If this is tea, please
bring me some coffee...”

Abraham Lincoln

Coffee == Tea

Java !== JavaScript

Strongly-typed (Java):

-typed (Java):

F Wstring name = “Scott”;

Date now new Date();

* Person p new Person(name, now);

“Scott”:

// throws ClassCastException

E ClassCastException (Java 2

- C' | ® docs.oracle.com/javase/1.4.2 /docs/api/java/lang/ClassCastException.html

javalang

Class ClassCastException

java.lang.Object
L java.lang.Throwable
L java.lang.Exception
L java.lang.RuntimeException
L—java.lang.ClassCastException

All Implemented Interfaces:
Serializable

public class ClassCastException
extends RuntimeException

Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an
instance. For example, the following code generates a ClassCastException:

Object x = new Integer(0);
System.out.println((String)x);

Since:
JDK1.0
‘ See Also:

VWeakl y-type «
(JavaScript):

name = “Scott”;
p = new Person(name, now);

Notice | didn’t say that JavaScript was

£ A re-introduction to Javasc
C' B https://developer.mozilla.org/en/A_re-introduction_to_JavaScript

Let's start off A looking at the building block of any language: the types. JavaScript prg
values, and (LU es all belong to a type. JavaScript's types are:

Numbers
Strings
Booleans
Functions
Objects

... oh, and Undefined and Null, which aré & & 4 are a special kind of object. And
Dates and Regular Expressions, which are ob] Qg ee. And to be technically accurate,

functions are just a special type of object. So the S =T 0 ks more like this:

Number
String
Boolean
Object

o Function
o Array

o Date

o RegExp
Null
Undefined

And there ar t in Error types as well. Things are a lot easier if we stick with the first diagram,
though.

(aka JavaScript “Truthiness™)

console.log(l 1)
console.log("JavaScript"

console.log(l true);

console.log(® false);
console.log("" false);
console.log("0" False);

In JavaScript:

== tests for "tr
In other words, == does type coercion

//true
"JavaScript"); //true

//true
//true
//true
//true

uthy” equality

console.log(l 1) //true
console.log("JavaScript" "JavaScript"); //true

console.log(l true); //true
console.log(® false); //true
console.log("" false); //true
console.log("@" False); //true

console.log("true" true); //FALSE!
console.log(false "false"); //FALSE!

console.log(® "0"); //true
console.log(@ S e //true
console.log("" i b ¥ //FALSE!

In JavaScript:
== tests for "truthy” equality

In other words, == does type coercion

JavaScript Hate

Yeah, uh, not all
JavaScript hate is misguided...

http://mrg.bz/0eS0B5

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Type(y), then
a. If Type(x) is Undefined, return true.
b. If Type(x) is Null, return true.
c. If Type(x) is Number, then
i. Ifxis NaN, return false.
ii. Ifyis NaN, return false.
iii. Ifxis the same Number value as y, return true.
iv. Ifxis +0 and y is -0, return true.
v. Ifxis =0 and y is +0, return true.
vi. Return false.
d. If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, return false.
e. If Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.
f. Return true if x and y refer to the same object. Otherwise, return false.
. Ifxis null and y is undefined, return true.
. If xis undefined and y is null, return true.
. If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) == y.
. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
. If Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) == y.
. Return false.

http://www.ecma-international.org/ecma-262/5.1/#sec-11.9.3

In JavaScript:
=== tests for "strict’ equallty
In other words, NO t

console.log(l 1)
console.log("JavaScript" "JavaScript");

console.log(l rue) ;
console.log(@ false);
console.log("" alse);
console.log("@" === false);

console.log("true" true) ;
console.log(false "false");

console.log(® ")
console.log(® i -
console.log("")5

var lang = "JavaScript"
var anotherlLang = new String("JavaScript")
console.log(lang anotherlLang);

//true
//true

//FALSE!
//FALSE!
//FALSE!
//FALSE!

//FALSE!
//FALSE!

//FALSE!
//FALSE!
//FALSE!

//FALSE!

Fascinating, but...

..what does strong vs. weak typing have to do with MongoDB?

1. MongoDB reduces language impedance mismatch

A JavaScript-based persistence solution is a perfect match for a
JavaScript-based application.

— imongoDB Tryit Out Drivers Downloads Community Blog Search Q

MongoDB stores data in the form of documents, which are JSON-like field and value pairs. Documents are
analogous to structures in programming languages that associate keys with values (e.g. dictionaries, hashes,
maps, and associative arrays). Formally, MongoDB documents are BSON documents. BSON is a binary
representation of JSON with additional type information. In the documents, the value of a field can be any
of the BSON data types, including other documents, arrays, and arrays of documents. For more information,

see Documents.

name: "'sue’, value
age: 26, value

status: "A", value

groups: ["news”, "sports”] value

http://docs.mongodb.org/manual/core/crud-introduction/

—_— 1mongoDB TryitOut Drivers Downloads Community Blog Search Q

Query
In MongoDB a query targets a specific collection of documents. Queries specify criteria, or conditions, that
identify the documents that MongoDB returns to the clients. A query may include a projection that specifies

the fields from the matching documents to return. You can optionally modify queries to impose limits, skips,
and sort orders.

In the following diagram, the query process specifies a query criteria and a sort modifier:

Collection

Query Crite

:[l'l

.users.find({ age: { $gt: 18 } }).sort({age: 1 })

http://docs.mongodb.org/manual/core/crud-introduction/

— a‘mongoDB TryitOut Drivers Downloads Community Blog Search

In the following diagram, the insert operation adds a new document to the users collection.

Document

db.users.insert(

name: "sue”,
age: 26,
status: "A",
groups: ["news”
}
)

Collection

"]’

name:
age: 26,
status: "
groups:

{ name

Q

http://docs.mongodb.org/manual/core/crud-introduction/

— ﬁ, mongoDB

{

Collection

¥
db.orders.aggregate([
bmatch stage >
Ip stage »

13

LI

cust_id: "Al
amount: 5€0,
status:

cust_id: "A123",
amount: 2590,

status: "A"

Try it Out

{ $match:

{ $group: { _id:

Drivers

{ status:

Downloads

w3 9%,

"$cust_id"”,total: { $sum:

cust_id:
amount:
status:

"A123",
509,

"a
l‘\

cust_id

amount:

B84 S
8217
B2TE" ,

200,

status:

cust_id: "A123",
amount: 3@9,

status: "D"

orders

status:

cust_id:
amount: 25

Community

Blog

8esu1ts

Jid: "A123%,

total: 750

Search

cust_id:
amount:

status:

"B212",

200,

A

_id: "B212",

total: 200

Q

"$amount” } } }

http://docs.mongodb.org/manual/core/aggregation-introduction/

amongoDB TryitOut Drivers Downloads Community Blog Search Q

b.orders.mapReduce(
map » function() { emit(this.cust_id, this.amount); },

function(key, values) { return Array.sum(values) },

{
query: { status: "A" },
out: "order_totals”
}
)

cust_id: "A123",

amount: 509,

~t & "an

SLatlus A
r

1

_id: "A123",

7590

value:

. cust_id: "A123",

amount: 250,

cust_id: "B2 ;)
amount: 200, {"8212". 2@8} Ady "B212",

200

status: "A" value:

 cust_id: "B212”,

amount: 209,

order_totals

http://docs.mongodb.org/manual/core/aggregation-introduction/

2. MongoDB reduces modeling impedance mismatch
MongoDB simply offers durable, persistent JSON.

Object-relational impedance mismatch

From Wikipedia, the free encyclopedia

The object-relational impedance mismatch is a set of conceptual and technical
difficulties that are often encountered when a relational database management system

(RDBMS) is being used by a program written in an object-oriented programming
language or style; particularly when objects or class definitions are mapped in a

straightforward way to database tables or relational schema.

The term object-relational impedance mismatch is derived from the electrical engineering

term impedance matching.

http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Schema-less persistence lends itself nicely
to an agile, emergent design.

— q mongoDB TryitOut Drivers Downloads Community Blog Search Q

Data Modeling Introduction

Data in MongoDB has a flexible schema. Unlike SQL databases, where you must determine and declare a
table’s schema before inserting data, MongoDB'’s collections do not enforce document structure. This

flexibility facilitates the mapping of documents to an entity or an object. Each document can match the
data fields of the represented entity, even if the data has substantial variation. In practice, however, the

documents in a collection share a similar structure.

The key challenge in data modeling is balancing the needs of the application, the performance
characteristics of the database engine, and the data retrieval patterns. When designing data models, always
consider the application usage of the data (i.e. queries, updates, and processing of the data) as well as the
inherent structure of the data itself.

http://docs.mongodb.org/manual/core/data-modeling-introduction/

MongoDB has primary keys but no joins in queries.

‘mongoDB TryitOut Drivers Downloads Community Blog Search Q

References store the relationships between data by including links or references from one document to
another. Applications can resolve these references to access the related data. Broadly, these are normalized
data models.

contact document

{

_1d: <ObjectlId2>,
user_id: <ObjectIdil1>,
phone: "123-456-7890",

user document : 2 i
email: "xyz@example.com

{
_id: <ObjectIdi>,

username: "123xyz” access document

{
_id: <ObjectId3>,

user_id: <ObjectIdi1>,
level: 5,
group: "dev”

http://docs.mongodb.org/manual/core/data-modeling-introduction/

Embedded docs more naturally match domain-driven design.

‘mongoDB TryitOut Drivers Downloads Community Blog Search Q

Embedded documents capture relationships between data by storing related data in a single document
structure. MongoDB documents make it possible to embed document structures in a field or array within a
document. These denormalized data models allow applications to retrieve and manipulate related data in a

single database operation.

{
_1d: <ObjectIdi1>,

username: "123xyz",

contact: {
phone: "123-456-7890",

email: "xyz@example.com”

¥

access: {
level: 5,

group: "dev”

http://docs.mongodb.org/manual/core/data-modeling-introduction/

MongoDB modeling introduces new idioms:

e Since we don't have joins, it's OK to denormalize data.

e Since we have embedded sub-documents,
1:1 relationships go away.

e Since we have embedded arrays,
1:Few relationships are commonplace.

MongoDB still supports common RDBMS idioms:

e |ndexing is still crucial to performance.
e Clustering/failover is available via replica sets.

e For large datasets, sharding distributes data across the cluster.

Point #8

Don't be afraid to embrace a
persistence solution that

reduces or eliminates

impedance mismatch.

It's notable that almost none of
the A-list companies featured
on

2 utilize traditional RDBMSes...

http://highscalability.com/

http://mongoosejs.com/

http://mongoosejs.com/

 |nstallation

First install node.js and mongodb. Then:

$ npm install mongoose

Overview

Connecting to MongoDB

First, we need to define a connection. If your app uses only one database, you should use
mongoose.connect . If you need to create additional connections, use mongoose.createConnection .

Both connect and createConnection take a mongodb:// URI, or the parameters host, database,

port, options.

var mongoose = require('mongoose’);

mongoose.connect('mongodb://localhost/my database');

Once connected, the open event is fired on the Connection instance. If you're using

mongoose.connect , the Connection iS mongoose.connection . Otherwise, mongoose.createConnection

return value is a Connection.

http://mongoosejs.com/
https://github.com/learnboost/mongoose

Defining a Model

Models are defined through the Schema interface.

Schema = mongoose.Schema
ObjectId = Schema.ObjectId;

BlogPost = new Schema({
author : ObjectId
title : String

body : String

date : Date

Aside from defining the structure of your documents and the types of data you're storing, a Schema
handles the definition of:

Validators (async and sync)
Defaults

Getters

Setters

Indexes

Middleware

Methods definition

Statics definition

Plugins

https://github.com/learnboost/mongoose

The following example shows some of these features:

Comment = new Schema({

name : { type: String, default: 'hahaha' }
age : { type: Number, min: 18, index: true }
bio : { type: String, match: /[a-z]/ }

date : { type: Date, default: Date.now }

buff : Buffer

Comment.path('name’).set(function (v) {
return capitalize(v);

1}

Comment.pre('save’', function (next) {
notify(.get('email’));
next();

1

Take a look at the example in examples/schema.js for an end-to-end example of a typical setup.

https://github.com/learnboost/mongoose

Mongoose supports embedded subdocs and arrays of subdocs.

Everything in Mongoose starts with a Schema. Each schema maps to a MongoDB
collection and defines the shape of the documents within that collection.

var mongoose = require('mongoose');

var Schema = mongoose.Schema;

plugins

change log
support

var blogSchema = new Schema({
title: String,

author: String,
fork

guide

= schemas
= types
models

body: String,

comments: [{ body: String, date: Date }],
date: { type: Date, default: Date.now },
hidden: Boolean,

meta: {

documents
votes: Number,

= sub docs

gueries
validation

favs: Number

}
});

middleware

population
connections If you want to add additional keys later, use the Schema#add method.
plugins

contributing
miaratinag from 2.x its associated SchemaType. For example, we've defined a title which will be cast to

Each key in our blogSchema defines a property in our documents which will be cast to

3.6 release notes the String SchemaType and date which will be cast to a Date SchemaType. Keys may

3.8 release notes also be assigned nested objects containing further key/type definitions (e.g. the ‘meta’
= APl docs property above).
= quick start

http://mongoosejs.com/docs/guide.html

Mongoose schemas support 1:M relationships

Arrays

Provide creation of arrays of SchemaTypes or Sub-Documents.

var ToySchema = new Schema({ name: String });
var ToyBox = new Schema({

plugins toys: [ToySchema],

change log buffers: [Buffer],

support string: [String],

fork
guide
= schemas ;
= types
models

numbers: [Number]

documents Note: specifying an empty array is equivalent to Mixed. The following all create arrays
= sub docs of Mixed

queries
validation

middleware

population
connections
plugins
contributing

rrimratina franma N v

new Schema({
new Schema({
new Schema({

new Schema({

[11});

: Array });

[Schema.Types.Mixed] });
({31 });

http://mongoosejs.com/docs/schematypes.html

Even though MongoDB doesn't support joins,
Mongoose supports 'em via populate.

There are no joins in MongoDB but sometimes we still want references to documents

in other collections. This is where population comes in.

Population is the process of automatically replacing the specified paths in the
document with document(s) from other collection(s). We may populate a single
document, multiple documents, plain object, multiple plain objects, or all objects

returned from a query. Let's look at some examples.
plugins

change log

support var mongoose = require('mongoose’)
fork , Schema = mongoose.Schema
guide
= schemas var personSchema = Schema({

= types =1d : Number,

models name : String,

documents age : Number,
= sub docs stories : [{ type: Schema.Types.ObjectId, ref: 'Story' }]

queries });

validation

middleware var storySchema = Schema({

population _creator : { type: Number, ref: 'Person' },
connections title : String,

plugins fans : [{ type: Number, ref: 'Person' }]

contributing });

mraimratine femma O o

http://mongoosejs.com/docs/populate.html

plugins
change log
support

fork

guide

= schemas
= types
models
documents
= sub docs
queries
validation
middleware

population
connections

plugins

contrihiitina

Population

So far we haven't done anything much different. We've merely created a Person and a
Story. Now let's take a look at populating our story's _creator using the query

builder:

Story
.findOne({ title: 'Once upon a timex.' })
.populate(' _creator')
.exec(function (err, story) {
if (err) return handleError(err);

console.log('The creator is %s', story. creator.name);

})

Populated paths are no longer set to their original _id , their value is replaced with the

mongoose document returned from the database by performing a separate query

before returning the results.

Arrays of refs work the same way. Just call the populate method on the query and an
array of documents will be returned in place of the original _ids.

http://mongoosejs.com/docs/populate.html

Point #9

- | MongooselS brings structure
4P toaschema-less datastore like
MongoDB.

Just because you're all cool
and NoSQL doesn't mean you
can't have features like
validation, indexes, defaults,
.~ pre- and post-save hooks, too.

Angular)$ === User Interface

https://angularjs.org/

NGULARIJS

by Google

HTML enhanced for web apps!

https://angularjs.org/
https://angularjs.org/

Linux = Node$
Apache m= Express)$
MySQL = MongoDB

Perl = Angular)$

MEAN

NodedJS I

MongoDB

[your app]

Sy

- ExpressJS

Browser

[your app]
L AngularJS

Single-page application

From Wikipedia, the free encyclopedia

A single-page application (SPA), is a web application or web site that fits on a single
web page with the goal of providing a more fluid user experience akin to a desktop
application. In an SPA, either all necessary code — HTML, JavaScript, and CSS —is

retrieved with a single page load,!!! or the appropriate resources are dynamically loaded

and added to the page as necessary, usually in response to user actions. The page does
not reload at any point in the process, nor does control transfer to another page, although
modern web technologies (such as those included in the HTMLS pushState() API)
can provide the perception and navigability of separate logical pages in the application.
Interaction with the single page application often involves dynamic communication with
the web server behind the scenes.

http://en.wikipedia.org/wiki/Single-page_application

A SPA has four
characteristics:

e Single Page

e Client-side

e Component-oriented

e Asynchronous/Event-driven

http://mrg.bz/65gcZR

|. Traditional Multipage App vs. Single-page App

|. Traditional App vs. Single-page App

index.html
grid.html

details.html

| . Traditional Multipage App vs. App

index.html
grid.html

<div id="index">

<div id="grid">
<div id="detalls">

details.html

Think “
instead of “Page Transition”

LAMP

Linux ——

Browser

2. Server-side MVC vs. Client-side MVC

T

2. Server-side MVC vs. Client-side MVC

]

2. Server-side MVC vs. Client-side MVC

| [—

T T

]

2. Server-side MVC vs. Client-side MVC

Database

T J—] |

(T

Router

2. Server-side MVC vs. Client-side MVC
Database
: View
L] HHIHI -
S0 EETED

Request HILILP GET ' 4 Response

~ /search!? "h. waScr m - text/html|

| y results
.html

MEAN

NodelJS

Browser

2. Server-side MVC vs. Client-side MVC

T

2. Server-side MVC vs. Client-side MVC

]

) — |

I

2. Server-side MVC vs. Client-side MVC

]

Router

) — |

I

2. Server-side MVC vs. Client-side MVC

RN

T Ji— 1

TTENET

& |
- o Ll
B\ 4
S -
i
\

Controller

2. Server-side MVC vs. Client-side MVC

Controller

2. Server-side MVC vs. Client-side MVC

]

Request:
AJAX

= 3

#search?q=JavaScript #

| Router

i

]

L]

Response:

{JSON}

Controller

2. Server-side MVC vs. Client-side MVC

]

Request:
AJAX

= 3

#search?q=JavaScript #

| Router

i

]

L]

Response:

{JSON}

Controller

3. vs. Component-oriented

BackTube

NI A 17—)

Animation / / /
Classics

Comedy

Crime Boxart Boxart Boxart Boxart
Drama

Documentary

Family
Foriegn
€9 Boxart Boxart Boxart Boxart
Horror /
Mystery

Romance
Sci Fi

3. vs. Component-oriented

BackTube

PR AN o/ a—

BackTube [pseudocode]

function buildPage(){
Avimation /z 7 write.menuCategories{
s var sidebar = $(“#sidebar”);
il for(i=0;i<length;i++){

Documentary sidebar.append(“...");

Family

Foriegn Boxart Boxart }
Boxart

Horror / /

Mystery / }

Romance

sei Fi write.movies{
var movieList = $(“#list”);
for(i=0;i<length;i++){
movieList.append(“...");

3. Page-centric vs.

BackTube

NI A 17—)

BackTube

H n
Animation /
Classics

Comedy

Crime Boxart Boxart
Drama

Documentary

Family
Foriegn
Boxart
Horror Boxart
Mystery

Romance
Sci Fi

3. Page-centric vs.

BackTube

PR AN [/ a—

Boxart ‘ u
Animation /
Classics
Comedy
Crime Boxart Boxart
Drama

Documentary

Family ’
Foriegn

9 Boxart Boxart
Horror /
Mystery

Romance
Sci Fi

3. Page-centric vs.

BackTube

NI A 17—)

[pseudocode]
var sidebar = new Sidebar();
var list = new ()3

N
Animation / /

Classics

Comedy
Crime Boxart Boxart Boxart Boxart
Drama

Documentary

Family

Foriegn > Boxart Boxart Boxart
oxart

Horror /

Mystery

Romance
Sci Fi

sidebar.addEventListener (
{component:list}

)

4. Synchronous vs.Asynchronous / Event-driven

4. vs.Asynchronous / Event-driven

[pseudocode - synchronous|]
function buildPage(){
var items = getMenultems();

writeSidebar(items);
var movies = getMovies();
writeMovies (movies);

4. Synchronous vs.Asynchronous / Event-driven

4.Synchronous vs.

[sidebar - onClick]
$scope.viewMoviesOfType = function(categoryId){
Movies.query({'catId': categoryId})
.Spromise
.then(function(ajaxResponse) {
var data = {
'movielList':ajaxResponse

}:

$Sscope.$emit('changeMainView',
{'data’':data});

)i
}

[main - eventListener]
$scope.S$on('changeMainView', function(e, args){
$scope.data = args.data;

})i

NGULARIJS

by Google

HTML enhanced for web apps!

| . Traditional Multipage App vs. Single-page App
2. Server-side MVC vs. Client-side MVC

3. Page-centric vs. Component-oriented

4. Synchronous vs.Asynchronous / Event-driven

Anﬁularls has four
characteristics:

HTML-centric
Declarative
Component-oriented
Dependency-injection

http://upload.wikimedia.org/wikipedia/commons/0/0b/4_pillars_from_the_inner_court_of_the_Bel_Temple_Palmyra_Syria.JPG

Angular]$ has four characteristics:

JavaScript-centric = HTML-centric

https://angularjs.org/

NGULARIJS

by Google

HTML enhanced for web apps!

https://angularjs.org/
https://angularjs.org/

@NGULAR # Home Sl

hy AngularJS?

HTML is great for declaring static documents, but it
alters when we try to use it for declaring dynamic
views in web-applications. AngulardS lets you
extend HTML vocabulary for your application. The
resulting environment is extraordinarily expressive,
readable, and quick to develop.

& Develop ® Discuss

Alternatives

Other frameworks deal with HTML’s shortcomings
by either abstracting away HTML, CSS, and/or
JavaScript or by providing an imperative way for
manipulating the DOM. Neither of these address
the root problem that HTML was not designed for
dynamic views.

https://angularjs.org/

Tabs

Presentations Speakers

e Custom AngulardS Directives
e Polymer: Less JS, More Righteous
e Developing Offline Applications

tabs.html (HTML

<body>
<h1>Tabs</h1>
<tabs>
<pane title="Presentations">

Custom AngularJS Directives</1li>
Polymer: Less JS, More Righteous</1li>
Developing Offline Applications</1li>

</pane>

<pane title="Speakers">

Scott Davis</1li>
Brian Sletten</1li>
Venkat Subramaniam</1li>

</pane>
</tabs>
</body>

GOAL:

Create a couple of custom AngularJS Directives for
<tabs> and <pane>

Angular)§ === Pre-processor

What are Directives?

At a high level, directives are markers on a DOM element (such as an attribute, element name, comment
or CSS class) that tell AngularJS's HTML compiler ($compile) to attach a specified behavior to that
DOM element or even transform the DOM element and its children.

Angular comes with a set of these directives built-in, like ngBind , ngModel , and ngClass . Much like
you create controllers and services, you can create your own directives for Angular to use. When

Angular bootstraps your application, the HTML compiler traverses the DOM matching directives against
the DOM elements.

What does it mean to "compile" an HTML template? For AngularJS, "compilation" means
attaching event listeners to the HTML to make it interactive. The reason we use the term "compile”
is that the recursive process of attaching directives mirrors the process of compiling source code in
compiled programming languages.

https://docs.angularjs.org/guide/directive

Directive === Custom HTML Element
(or Custom HTML Attribute)

Angular$ has four characteristics:

JavaScript-centric = HTML-centric
Imperative m Declarative

Declarative vs. Imperative

AngularJSis Declarative:
Thisiswhat I'd like to happen.

jQuery is Imperative:
This is how you should do it.

Simple AngularJS

Name: Bubbad

Hello Bubba!

simple__angularjs.html

<html ng-app>
<head>
<title>Simple AngularJS</title>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/
1.2.20/angular.min. js"></script>
</head>
<body>
<hl>Simple AngularJs</hl>
<div>
<label>Name:</label>
<input type="text" ng-model="yourName" placeholder="Enter a name here">
<hr>
<hl>Hello {{yourName}}!</h1>
</div>
</body>
</html>

Simple jQuery

Name: Jane Doe|

Hello Jane Doe!

simple__jquery.html

<html>
<head>
<title>Simple jQuery</title>
<script src="//code.jquery.com/jquery-2.1l.1l.min.js"></script>
<script>

</script>
</head>
<body>
<hl>Simple jQuery</hl>
<div>
<label>Name:</label>
<input type="text" id="yourName" placeholder="Enter a name here">
<hr>
<hl>Hello !</hl>
</div>
</body>

To paraphrase my friend
Dr. Venkat Subramaniam:

"You give imperative
instructions to children;
declarative instructions to
adults..."

ok

My wife to me:
"Go upstairs and take a shower before dinner."

My wife to my son:

Go upstairs now

Walk into the bathroom

Take off all of your clothes

Turn on the water

Get in the shower

Wash your hair AND your face AND your body...

Iterate Angular]JS

e Angular]S
e 1Query

iterate-angularjs.html (HTML

<body>
<hl>Iterate AngularJS</hl>
<ul ng-controller="LibController">
<li ng-repeat="lib in libraries">

{{lib.name}}
</1li>

</body>

iterate-angularjs.html (JS)

Iterate jQuery

e Angular]S
* JQuery

iterate-jquery.html (HTML

<body>
<hl>Iterate jQuery</hl>

<ul id="libs'">
</body>

iterate-jquery.html (JS)

Angular)$ has four characteristics:

JavaScript-centric = HTML-centric
Imperative m Declarative
Page-oriented ™ Component-oriented

page-oriented » DOM === glohal variable

A —

2754 Global Variables Are Bad

This is something I have a hard time putting in words. I've been bitten by globals in the past, so I '’know' they're 'bad’, but for
the life of me, I can't explain why. What I'd like is to have some straightforward "Here's why globals are bad" document I
can point other people to, preferably with some concrete (if toy) examples.

As with all HeuristicRules, this is not a rule that applies 100% of the time. Code is generally clearer and easier to maintain
when it does not use globals, but there are exceptions. It is similar in spirit to GotoConsideredHarmful, although use of
global variables is less likely to get you branded as an inveterate hacker.

Why Global Variables Should Be Avoided When Unnecessary

» Non-locality -- Source code is easiest to understand when the scope of its individual elements are limited. Global
variables can be read or modified by any part of the program, making it difficult to remember or reason about every
possible use.

No Access Control or Constraint Checking -- A global variable can be get or set by any part of the program, and any

rules regarding its use can be easily broken or forgotten. (In other words, get/set accessors are generally preferable
over direct data access, and this is even more so for global data.) By extension, the lack of access control greatly
hinders achieving security in situations where you may wish to run untrusted code (such as working with 3rd party
plugins).

Implicit coupling -- A program with many global variables often has tight couplings between some of those variables,
and couplings between variables and functions. Grouping coupled items into cohesive units usually leads to better
programs.

Concurrency issues -- if globals can be accessed by multiple threads of execution, synchronization is necessary (and
too-often neglected). When dynamically linking modules with globals, the composed system might not be thread-safe
even if the two independent modules tested in dozens of different contexts were safe.

Namespace pollution -- Global names are available everywhere. You may unknowingly end up using a global when
you think you are using a local (by misspelling or forgetting to declare the local) or vice versa. Also, if you ever have
to link together modules that have the same global variable names, if you are lucky, you will get linking errors. If you
are unlucky, the linker will simply treat all uses of the same name as the same object.

Memory allocation issues -- Some environments have memory allocation schemes that make allocation of globals
tricky. This is especially true in languages where "constructors" have side-effects other than allocation (because, in
that case, you can express unsafe situations where two globals mutually depend on one another). Also, when
dynamically linking modules, it can be unclear whether different libraries have their own instances of globals or
whether the globals are shared.

Testing and Confinement - source that utilizes globals is somewhat more difficult to test because one cannot readily

http://mrg.bz/pZqjsV
http://c2.com/cgi/wiki?GlobalVariablesAreBad

Encapsulation (object-oriented programming)

From Wikipedia, the free encyclopedia

Encapsulation is the packing of data and functions into a single component. The features of
encapsulation are supported using classes in most object-oriented programming languages, although
other alternatives also exist. It allows selective hiding of properties and methods in an object by building
an impenetrable wall to protect the code from accidental corruption.

In programming languages, encapsulation is used to refer to one of two related but distinct notions, and
sometimes to the combination['!? thereof:

- A language mechanism for restricting access to some of the object's components.[3ll4]

« A language construct that facilitates the bundling of data with the methods (or other functions)
operating on that data.[>!®!

Some programming language researchers and academics use the first meaning alone or in combination
with the second as a distinguishing feature of object-oriented programming, while other programming
languages which provide lexical closures view encapsulation as a feature of the language orthogonal to
object orientation.

The second definition is motivated by the fact that in many OOP languages hiding of components is not
automatic or can be overridden; thus, information hiding is defined as a separate notion by those who
prefer the second definition.

http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)

Angularl$ Scopes

What are SCOpeS? & Improve this Doc

scope is an object that refers to the application model. It is an execution context for expressions.
Scopes are arranged in hierarchical structure which mimic the DOM structure of the application. Scopes
can watch expressions and propagate events.

Scope characteristics

Scopes provide APls ($watch) to observe model mutations.

Scopes provide APIs ($apply) to propagate any model changes through the system into the view from
outside of the "Angular realm"” (controllers, services, Angular event handlers).

Scopes can be nested to limit access to the properties of application components while providing
access to shared model properties. Nested scopes are either "child scopes” or "isolate scopes”. A
"child scope" (prototypically) inherits properties from its parent scope. An "isolate scope" does not. See
isolated scopes for more information.

Scopes provide context against which expressions are evaluated. For example {{username}}
expression is meaningless, unless it is evaluated against a specific scope which defines the username
property.

https://docs.angularjs.org/guide/scope

iterate-angularjs.html (JS)

iterate-angularjs.html (HTML

<body>
<hl>Iterate AngularJS</hl>
<ul ng-controller="LibController">
<li ng-repeat="lib in libraries">

{{lib.name}}
</1li>

</body>

Angular scopes lead to directives

Once you understand scopes,
the next logical step is directives and isolate scope.

What we want to be able to do is separate the scope inside a directive from the scope outside, and then
map the outer scope to a directive's inner scope. We can do this by creating what we call an isolate

scope. To do this, we can use a directive's scope option:

script.js index.html my-customer-iso.html| (Z Editin Plunker

<div ng-controller="Controller">
<my-customer info="naomi'></my-customer>

<hr>
<my-customer info="igor"'"></my-customer>
</div>

Name: Naomi Address: 1600 Amphitheatre

Name: Igor Address: 123 Somewhere

https://docs.angularjs.org/guide/directive

What we want to be able to do is separate the scope inside a directive from the scope outside, and then
map the outer scope to a directive's inner scope. We can do this by creating what we call an isolate

scope. To do this, we can use a directive's scope option:

script.js index.htmi my-customer-iso.html| (Z Editin Plunker

angular.module('docsIsolateScopeDirective', [])
.controller('Controller', ['$scope', function($scope) {
$scope.naomi = { name: 'Naomi', address: '1600 Amphitheatre' };

$scope.igor = { name: 'Igor', address: '123 Somewhere' };
)
.directive('myCustomer', function() {
return {
restrict: 'E’',
scope: A
customerInfo: '=info'

}

templateUrl: 'my-customer-iso.html'’

Name: Naomi Address: 1600 Amphitheatre

Name: Igor Address: 123 Somewhere

https://docs.angularjs.org/guide/directive

Angular v2.0.0

The Changing Web All About Angular 2.0

While massive changes have happened in the last couple of years, they pale in comparison to what's
coming in the next 1-3 years. In a few months the ES6 spec will be finalized. It's not unreasonable to
think that we'll see a browser in 2015 that implements the full spec. Today's browsers already support
some of these features and are working on implementations of the rest right now. This means
browser support for things like modules, classes, lambdas, generators, etc. These features

fundamentally transform the JavaScript programming experience. But big changes aren't constrained

merely to JavaScript. Web Components are on the horizon. The term Web Components usually refers

to a collection of four related W3C specifications:

Custom Elements - Enables the extension of HTML through custom tags.
HTML Imports - Enables packaging of various resources (HTML, CSS, JS, etc.).
Template Element - Enables the inclusion of inert HTML in a document.

Shadow DOM - Enables encapsulation of DOM and CSS.

http://eisenbergeffect.bluespire.com/all-about-angular-2-0/

POLYFILLS SPECS PRESENTATIONS

The webcomponent.js polyfills
enable Web Components in This specificatio Creating container
is specification
(evergreen) browsers that lack) components
= = describes the method for

native support. : in Web Components and Angular
enabling the author to g <ok March 5,200

Install with define and use new types
of DOM elementsin a CREATING CONTAINER

document. COMPONENTS IN WEB
Install with COMPONENTS AND ANGULAR

CUSTOM ELEMENTS

HTML IMPORTS Architecting your Angular

application with reusable
components can be complicated.
Many times, Ul components that
need multiple entry points for user
markup and the standard ng-

transclude do not do enough of
learn more about the polyfills TEMPLATES what is required. Using Web

This specification Component standards, like the

describes a method for Shadow DOM, we can now enable

declaring inert DOM our applications to easily handle
BROWSER SUPPORT subtrees in HTML and this.

manipulating them to

instantiate document

HROME OFERA FIREFOX SAFARI E 2 g
fragments with identical see all presentations

contents.

HTML Imports are a way
to include and reuse
HTML documents in
other HTML documents.

SHADOW DOM
This specification COMMUNITY

Aacrrihac 2 mathad af

http://webcomponents.org/

Angular)$ has four characteristics:

JavaScript-centric = HTML-centric
Imperative m Declarative
Page-oriented ™ Component-oriented
Constructors (new) " Dependency Injection

Dependency Injection), improve s Do

Dependency Injection (DI) is a software design pattern that deals with how components get hold of their
dependencies.

The Angular injector subsystem is in charge of creating components, resolving their dependencies, and
providing them to other components as requested.

Using Dependency Injection

Dl is pervasive throughout Angular. You can use it when defining components or when providing run
and config blocks for a module.

o Components such as services, directives, filters, and animations are defined by an injectable
factory method or constructor function. These components can be injected with "service" and
"value" components as dependencies.

Controllers are defined by a constructor function, which can be injected with any of the "service"
and "value" components as dependencies, but they can also be provided with special
dependencies. See Controllers below for a list of these special dependencies.

The run method accepts a function, which can be injected with "service", "value" and
"constant” components as dependencies. Note that you cannot inject "providers" into run

blocks.

https://docs.angularjs.org/guide/di

Why Dependency Injection?
This section motivates and explains Angular's use of DI. For how to use DI, see above.

For in-depth discussion about DI, see Dependency Injection at Wikipedia, Inversion of Control by Martin
Fowler, or read about DI in your favorite software design pattern book.

There are only three ways a component (object or function) can get a hold of its dependencies:

1. The component can create the dependency, typically using the new operator.
2. The component can look up the dependency, by referring to a global variable.
3. The component can have the dependency passed to it where it is needed.

The first two options of creating or looking up dependencies are not optimal because they hard code
the dependency to the component. This makes it difficult, if not impossible, to modify the
dependencies. This is especially problematic in tests, where it is often desirable to provide mock
dependencies for test isolation.

The third option is the most viable, since it removes the responsibility of locating the dependency from
the component. The dependency is simply handed to the component.

function SomeClass(greeter) {
this.greeter = greeter;

}

SomeClass.prototype.doSomething = function(name) {
this.greeter.greet(name);

}

https://docs.angularjs.org/guide/di

Asking for dependencies solves the issue of hard coding, but it also means that the injector needs to be
passed throughout the application. Passing the injector breaks the Law of Demeter. To remedy this, we
use a declarative notation in our HTML templates, to hand the responsibility of creating components
over to the injector, as in this example:

<div ng-controller="MyController">

<button ng-click="sayHello()">Hello</button>
</div>

function MyController($scope, greeter) {
$scope.sayHello = function() {
greeter.greet('Hello World');
};
}

When Angular compiles the HTML, it processes the ng-controller directive, which in turn asks the
injector to create an instance of the controller and its dependencies.

injector.instantiate(MyController);

This is all done behind the scenes. Notice that by having the ng-controller ask the injector to

instantiate the class, it can satisfy all of the dependencies of MyController without the controller ever
knowing about the injector.

This is the best outcome. The application code simply declares the dependencies it needs, without
having to deal with the injector. This setup does not break the Law of Demeter.

https://docs.angularjs.org/guide/di

Angular DI = stupid-easy testing

$htthaCkend @ View Source & Improve this Doc

Fake HTTP backend implementation suitable for unit testing applications that
use the $http service.

Note: For fake HTTP backend implementation suitable for end-to-end testing or backend-less
development please see e2e $httpBackend mock.

During unit testing, we want our unit tests to run quickly and have no external dependencies so we don’t
want to send XHR or JSONP requests to a real server. All we really need is to verify whether a certain
request has been sent or not, or alternatively just let the application make requests, respond with pre-
trained responses and assert that the end result is what we expect it to be.

This mock implementation can be used to respond with static or dynamic responses via the expect
and when apis and their shortcuts (expectGET , whenPOST , etc).

When an Angular application needs some data from a server, it calls the $http service, which sends the
request to a real server using $httpBackend service. With dependency injection, it is easy to inject
$httpBackend mock (which has the same API as $httpBackend) and use it to verify the requests and
respond with some testing data without sending a request to a real server.

There are two ways to specify what test data should be returned as http responses by the mock
backend when the code under test makes http requests:

e $httpBackend.expect - specifies a request expectation
e $httpBackend.when - specifies a backend definition

https://docs.angularjs.org/api/ngMock/service/$httpBackend

Anﬁularls has four
characteristics:

HTML-centric
Declarative
Component-oriented
Dependency-injection

http://upload.wikimedia.org/wikipedia/commons/0/0b/4_pillars_from_the_inner_court_of_the_Bel_Temple_Palmyra_Syria.JPG

Conclusion

LAMP = NEMA

Linux " NodeJS (Platform)
Apache ™ ExpressJS (Web Server)

MySQL = MongoDB (Persistence)
Perl = AngularJS (User Interface)

MEAN

NodedJS I

MongoDB

[your app]

Sy

- ExpressJS

Browser

[your app]
L AngularJS

O/ DAYS

SINCE LAST NEW
JAVASCRIPT FRAMEWORK

The Goldilocks
Framework

This soup is too hot...
too cold...
just right...

http://en.wikipedia.org/wiki/The_Story_of_the_Three_Bears#mediaviewer/File:The_Three_Bears_-_Project_Gutenberg_etext_19993.jpg

EXPLORING THE
ARCHITECTURE OF
THE MEAN STACK

MongoDB, Express)S, Angular]S, Node)S

Web: http://thirstyhead.com
itter: [

http://twitter.com/scottdavis99
http://my.thirstyhead.com/
http://thirstyhead.com/
mailto:scott@thirstyhead.com

