Real World Use Cases:
Hadoop & NoSQL in Production

Ted Dunning and Ellen Friedman
Strata Hadoop World Conference 19 February 2015
Contact Information

Ted Dunning
Chief Applications Architect, MapR Technologies
Committer & PMC for Apache’s Drill, Zookeeper & Mahout
Mentor for Myriad & Apache’s Storm, Flink, Datafu, Optiq, Drill

Email
 tdunning@apache.org tdunning@maprtech.com

Twitter
 @ted_dunning
Hash tag today: #StrataHadoop
Contact Information

Ellen Friedman
Solutions Consultant and Commentator
Apache Mahout committer, Apache Drill contributor

Email
ellenf@apache.org efriedman@maprtech.com

Twitter
@Ellen_Friedman @ApacheDrill
Hashtag today:
#StrataHadoop
What can you do with Hadoop?
How can you succeed?

One good way is to see what others are doing

• Look at use cases in your own vertical

• What about use cases in other verticals?
 – They may look different but have the same basic issues and yield to the same basic solutions
 – Look for common design patterns that cut across verticals

• Shows you how things work in practice, not in theory
Is Hadoop ready for production?
yes
Evidence:
So many people are using Hadoop and NoSQL successfully in production already
Real-World Hadoop

Ted Dunning & Ellen Friedman
Real-World Hadoop

How MapR customers are using Apache Hadoop and NoSQL

Ted Dunning & Ellen Friedman
What is MapR?
MapR is Hadoop and more…
MapR is a distribution for Apache Hadoop, but...

- It is API compatible with Apache Hadoop (no vendor lock in)

- Has it’s own distributed file system: MapR-FS
 - MapR-FS is a real time, fully read/write file system
 - Supports NFS/POSIX

- You can use Hadoop commands but also non-Hadoop commands
 - Also use Linux, Python, JAVA, etc.

- MapR cluster is not isolated: Use it like any file system
MapR’s real file system has advantages

• Snapshots are consistent

• Mirroring is fast, efficient and reliable
 – Secondary data center for disaster recovery much easier to set up

• You can use legacy code and applications directly
 – Don’t have to copy everything in and out for use
MapR has no NameNode

- Extremely reliable

- High availability

- Good performance; less traffic problems
MapR-FS includes a NoSQL db: MapR-DB

• It is API compatible with Apache Hbase

• MapR-DB does not have delays due to compactions
 – Makes it very highly available

• More column families; great performance
If you’re new to Hadoop...
Free on-demand Hadoop training leading to certification

Start becoming an expert now
mapr.com/training
Pick one thing and get started

• Don’t have to decide all-at-once all the ways you may use Hadoop

• Future-proof your organization: Build experience
 – You won’t be a Hadoop pioneer, but there’s still an early mover advantage

• Lose your fear of failure (plan for a few false starts)

• Start conservatively and plan to expand
Good 1st use case: Data Warehouse Optimization

A. Traditional Architecture

Data source
- Data source export
 - NFS storage
 - Enterprise storage ($$)

Data warehouse ($$$)
- ETL
- Staging tables
- Work tables
- Production jobs

B. MapR distribution for Hadoop

Data source
- Data source export
 - NFS
 - MapR Hadoop cluster ($)

Data warehouse ($$$)
- Production jobs
- Staging tables
- Work tables
- ETL
- NFS
Good 1st use case: Data Warehouse Optimization

B. MapR distribution for Hadoop

Data source

<table>
<thead>
<tr>
<th>Data source export</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS</td>
</tr>
</tbody>
</table>

Staging tables

ETL

Production jobs

Work tables

NFS

MapR Hadoop cluster ($)

Data warehouse ($$$)

C. HDFS-based distribution for Hadoop

Data source

<table>
<thead>
<tr>
<th>Data source export</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import</td>
</tr>
</tbody>
</table>

Export

Staging tables

ETL

Work tables

Any Hadoop cluster ($)

Data warehouse ($$$)

Production jobs
Benefits of DW Optimization

- Reduce strain on DW and save money
- Keep using traditional systems for what they do best
- Additional benefit: Option for further explore the original data
 - Feasible to have saved it thanks to the cost-effective nature of Hadoop
If you’re experienced Hadoop user...
Plan across entire organization

• Expand cluster as you identify new use cases of interest

• Build a centralized data hub:
 – break silos, provide access to same data by multiple groups

• Propagate knowledge of Hadoop & NoSQL to other groups

• Continue to give your teams time to explore & experiment

• Plan co-existence of traditional, legacy & new applications (MapR makes this easier to do)
Additional tips

• Be realistic about SLA’s (example: some projects need 24/7 availability or very fast response times)

• Be flexible: Shake off old assumptions and look for opportunities to build new insights
Another use case...
Streaming Log Analysis: Business Goals

• Customer may be trying to track down a security breach

• Customer may be interested in identifying anomalous behaviors or other patterns clickstream data from user interactions on a website

• Customer may want to supply data to a real-time dashboard
Persistent queuing is key
Streaming log analysis

Persistent queuing is a key architectural pattern.
Universal Architectural Pattern

- Incoming events
- Stream processor
- Metrics
- Exceptions
- Results
Stateful Reliable Processing

- **Stream processor**
 - **Incoming events**
 - **Queue checkpoint**
 - **State checkpoints**
 - **Metrics**
 - **Exceptions**
 - **Results**
Keys to Queue Architectures

• Standardize on record formats
 – More than one may be needed
 – Parquet (sadly) doesn’t like record by record
 – Simple Binary Encoding has very fast record codecs
 – Low latency and mechanical sympathy communities are good resources

• Standardize on component shapes
 – Goes-ins and goes-outs first
 – Metrics and exception channels are required
 – Checkpoint to files, push checkpoint record to queue
Another use case...
Predictive Maintenance

Images courtesy MTell
Time Series Data: Predictive Maintenance

• Streaming sensor data for variety of measurements made at multiple times

• Keep a long term maintenance history (part #, location, when serviced; when failed)

• Use machine learning techniques to identify indicators of a potential near-term failure and send alert
Time Series Data from Sensors
Time Series Notes

• Sustained load is what people worry about
 – Look for secondary loading effects like compactions
 – Consider pre-compaction in memory

• Backfill is actually the hardest part technically
 – (1000x higher data rate)
 – See our time series book for 200 M points / sec
Another use case...
Anomaly Detection and Fraud Analytics

• Customer wants to identify zero-day attacks

• And advanced persistent threats

• By sophisticated adversaries who don’t use known vectors

• Must keep logs and other data secret
 – But must also collaborate on detection algorithms
Secure Development is Hard
Secure Development is Hard

Outside collaborators are outside the security perimeter
Parametric Simulation

Parametric matching of failure signatures allows emulation of complex data properties

Matching on KPI’s and failure modes guarantees *practical* fidelity
Simulation Setup

![Graph showing simulation setup with two periods: Compromise period and Exploit period. The x-axis represents time in days, and the y-axis represents count. The graph includes two curves: one for compromises and another for frauds.](image)
LLR score for simulated merchants

Number of Merchants

Breach Score (LLR)

Compromised Merchant
October Breach Analysis

Breach Score (LLR) vs. Number of Merchants
Ask me about Myriad
Ask me about Myriad
Ask me about Myriad and about zeta (ζ)
Real World Hadoop
by Ted Dunning and Ellen Friedman © Feb 2015 (published by O’Reilly)
eBook courtesy of MapR:
Real World Hadoop
by Ted Dunning and Ellen Friedman © Feb 2015 (published by O’Reilly)

Free print copy during book signings at MapR booth

Thur 5:30 pm
Fri 10:10 am
Related events at Strata this week:

Office Hour Ellen Friedman Thur 19 Feb 2015 at 11:30 am

Plus news of Myriad: new OSS collaboration for global resource management:

“YARN vs. Mesos: Can’t We All Just Get Along” Technical talk by Ted Dunning
Fri 20 Feb 2015 at 2:20pm
Thank You!
Q&A
Engage with us!

@mapr maprtech
mapr-technologies MapR

tdunning@mapr.tech.com maprtech