Banana Pi Cookbook

Banana Pi is a dual core single board microcomputer like Raspberry Pi but is much faster, more cost-effective, and performs more efficiently than Raspberry Pi.

Banana Pi Cookbook is a practical guide that starts with setting up Banana Pi and moves on to exploring the more advanced capabilities of the device. You will learn to build a decent Linux-based operating system that can resolve common server tasks (Samba, Web, DLNA) and multimedia challenges. Also, you will see how to use the GPIO opportunities by building simple but straightforward circuits.

By the end of this book, you will be an expert in using Banana Pi to deploy a variety of hardware and software applications.

What this book will do for you...

- Discover how to configure and maintain your Banana Pi device
- Install Android and a Linux-based distribution onto Banana Pi
- Attach external drives to your Banana Pi by using the USB or SATA interfaces
- Share files between your Banana Pi and other devices either in your internal network or over the Internet
- Connect remotely to your Banana Pi using SSH and VNC
- Build simple electrical circuits and connect simple hardware elements such as LEDs, resistors, and buttons to the GPIO pins
- Configure a multimedia center that is able to play high-definition content

Inside the Cookbook...

- A straightforward and easy-to-follow format
- A selection of the most important tasks and problems
- Carefully organized instructions for solving the problem efficiently
- Clear explanations of what you did
- Apply the solution to other situations

Over 25 recipes to build projects and applications for multiple platforms with Banana Pi
In this package, you will find:

- The author biography
- A preview chapter from the book, Chapter 1 'Installation and Setup'
- A synopsis of the book’s content
- More information on Banana Pi Cookbook
About the Author

Ryad El-Dajani is a software engineer and passionate technology enthusiast. He developed an interest in computers when he was 10 years old. Soon thereafter, he began to learn his first programming languages.

After he had completed his training as an IT specialist, he worked on several e-commerce Internet projects. Currently, he is studying business computing and works for a big IT company in Germany, realizing various IT projects based on Java or .NET technologies.

Besides the classic application development, he has professional experience in realizing projects based on web frameworks such as Spring, Play, Symfony, eZ Publish, and Magento. Moreover, he has been excited about all kinds of Unix-like embedded systems since the revolutionary SheevaPlug.
Packed with recipes for the Banana Pi, solving the most common real-world problems, viewers get a practical assistance to avoid difficulties.

Full of supportive guides, this book is designed to help you build and expand your device into a versatile box. Any computer enthusiast can quickly learn how to become a Banana Pi expert, while not requiring skills in programming or Linux. *Banana Pi Cookbook* will allow you to use the technology start from the very beginning, through the daily usage and maintenance, up to setting up a WordPress from scratch, sharing files using Samba or ownCloud, blinking an LED, or playing 1080p videos.

What this book covers

Chapter 1, Installation and Setup, introduces the Banana Pi device. It also explains which distributions are available and how to download and install a Linux distribution. Moreover, we present Android as a contrast to our upcoming Linux adventure.

Chapter 2, Administration, introduces the reader to the most common tools to administrate their fresh Linux installation. We will connect remotely using SSH from Windows (using PuTTY) and Linux (using the command-line SSH application). Besides user modification (adding a new user, changing passwords, and so on), we will also cover basic maintenance tasks, such as searching and installing a new software, updating the system using the distributions package manager, and so on.

Chapter 3, External Disks, covers all about external disk drives. We will connect and mount USB drives and HDD drives using the SATA interface and explore the possibility of switching the root filesystem to and boot from an external drive.

Chapter 4, Networking, presents recipes for common networking tasks using the Banana Pi. One of the key strengths of the device is the fast Ethernet and wireless (Banana Pro) adapters it provides—especially combined with the fast SATA interface—which is the base of powerful network applications.
Preface

Chapter 5, Using the GPIO Pins, introduces the GPIO pins. We will light up an LED using the shell. Furthermore, we will build a simple circuit, including a pull-up resistor and control an LED with a button. To achieve this, we will introduce the C programming language with the WiringPi library and the Python scripting language with the RPi.GPIO library.

Chapter 6, Multimedia, covers configuring the two audio outputs (line out and HDMI). We will discuss and solve the hardware acceleration problem by compiling important components and using these mentioned components to build video players and Kodi. The configuration of a remote control using LIRC is also covered.
This chapter will cover the following recipes:

- Downloading an operating system for the Banana Pi
- Setting up the SD card on Windows
- Setting up the SD card on Linux
- Booting up and shutting down the Banana Pi

Introduction

The Banana Pi is a single-board computer, which enables you to build your own individual and versatile system. In fact, it is a complete computer, including all the required elements such as a processor, memory, network, and other interfaces, which we are going to explore. It provides enough power to run even relatively complex applications suitably.

In this chapter, we are going to get to know the Banana Pi device. The available distributions are mentioned, as well as how to download and install these distributions. We will also examine Android in contrast to our upcoming Linux adventure.

Thus, you are going to transform your little piece of hardware into a functional, running computer with a working operating system. You will master the whole process of doing the required task from connecting the cables, choosing an operating system, writing the image to an SD card, and successfully booting up and shutting down your device for the first time.
Banana Pi Overview

In the following picture, you see a Banana Pi on the left-hand side and a Banana Pro on the right-hand side:

![Banana Pi and Banana Pro](image)

As you can see, there are some small differences that we need to notice. The Banana Pi provides a dedicated composite video output besides the HDMI output. However, with the Banana Pro, you can connect your display via composite video output using a four-pole composite audio/video cable on the jack.

In contrast to the Banana Pi, which has 26 pin headers, the Banana Pro provides 40 pins. Also the pins for the UART port interface are located below the GPIO headers on the Pi, while they are located besides the network interface on the Pro.

The other two important differences are not clearly visible on the previous picture. The operating system for your device comes in the form of image files that need to be written (burned) to an SD card. The Banana Pi uses normal SD cards while the Banana Pro will only accept Micro SD cards. Moreover, the Banana Pro provides a Wi-Fi interface already on board. Therefore, you are also able to connect the Banana Pro to your wireless network, while the Pi would require an external wireless USB device.

Besides the mentioned differences, the devices are very similar. You will find the following hardware components and interfaces on your device.
On the back side, you will find:

- A20 ARM Cortex-A7 dual core central processing unit (CPU)
- ARM Mali400 MP2 graphics processing unit (GPU)
- 1 gigabyte of DDR3 memory (that is shared with the GPU)

On the front side, you will find:

- Ethernet network interface adapter
- Two USB 2.0 ports
- A 5V micro USB power with DC in and a micro USB OTG port
- A SATA 2.0 port and SATA power output
- Various display outputs [HDMI, LVDS, and composite (integrated into jack on the Pro)]
- A CSI camera input connector
- An infrared (IR) receiver
- A microphone
- Various hardware buttons on board (power key, reset key, and UBoot key)
- Various LEDs (red for power status, blue for Ethernet status, and green for user defined)

As you can see, you have a lot of opportunities for letting your device interact with various external components. In the upcoming chapters, we are going to explore most of the possibilities in detail.

Operating systems for the Banana Pi

The Banana Pi is capable of running any operating system that supports the ARM Cortex-A7 architecture. There are several operating systems precompiled, so you are able to write the operating system to an SD card and boot your system flawlessly. Currently, there are the following operating systems provided officially by LeMaker, the manufacturer of the Banana Pi.

Android

Android is a well-known operating system for mobile phones, but it is also runnable on various other devices such as smart watches, cars, and, of course, single-board computers such as the Banana Pi.

The main advantage of running Android on a single-board computer is its convenience. Anybody who uses an Android-based smartphone will recognize the graphical user interface (GUI) and may have less initial hurdles. Also, setting up a media center might be easier to do on Android than on a Linux-based system.
Installation and Setup

However, there are also a few disadvantages, as you are limited to software that is provided by an Android store such as Google Play. As most apps are optimized for mobile use at the moment, you will not find a lot of usable software for your Banana Pi running Android, except some Games and Multimedia applications. Moreover, you are required to use special Windows software called PhoenixCard to be able to prepare an Android SD card.

Because of the mentioned disadvantages, this book will show you how to get Android up and running, but focus on Linux-based distributions in the next chapters.

Linux

Most of the Linux users never realize that they are actually using Linux when operating their phones, appliances, routers, and many more products, as most of its magic happens in the background. We are going to dig into this adventure to discover its possibilities when running on our Banana Pi device.

The following Linux-based operating systems—so-called distributions—are used by the majority of the Banana Pi user base and are supported officially by the manufacturer:

- **Lubuntu**: This is a lightweight distribution based on the well-known Ubuntu using the LXDE desktop, which is principally a good choice, if you are a Windows user.
- **Raspbian**: This is a distribution based on Debian, which was initially produced for the Raspberry Pi (hence the name). As a lot of Raspberry Pi owners are running Raspbian on their devices while also experimenting with the Banana Pi, LeMaker ported the original Raspbian distribution to the Banana Pi. Raspbian also comes with an LXDE desktop by default.
- **Bananian**: This too is a Debian-based Linux distribution optimized exclusively for the Banana Pi and its siblings.

All of the aforementioned distributions are based on the well-known distribution, Debian. Besides the huge user base, all Debian-based distributions use the same package manager **Apt (Advanced Packaging Tool)** to search for and install new software, and all are similar to use. In the upcoming recipes, we are going to use Raspbian. However, most recipes will be valid for the other Debian-based distributions.
There are still more distributions that are officially supported by LeMaker, such as Berryboot, LeMedia, OpenSUSE, Fedora, Gentoo, Scratch, ArchLinux, Open MediaVault, and OpenWrt. All of them have their pros and cons or their specific use cases. If you are an experienced Linux user, you may choose your preferred distribution from the mentioned list, as most of the recipes in this book are similar to, or even equally usable on, most of the Linux-based operating systems.

Moreover, the Banana Pi community publishes various customized Linux distributions for the Banana Pi regularly. The possible advantages of a customized distribution may include enabled and optimized hardware acceleration capabilities, supportive helper scripts, fully equipped desktop environments, and much more. However, when deciding to use a customized distribution, there is no official support by LeMaker and you have to contact the publisher in case you encounter bugs, or need help.

Downloading an operating system for the Banana Pi

The following two recipes will explain how to set up the SD card with the desired operating system and how to get the Banana Pi up and running for the first time. This recipe is a predecessor, as the required hardware components and the downloaded image is valid for both Windows and Linux systems.

Usually, the Banana Pi is shipped without any other components. Besides the device itself, you will need at least a source for energy, which is usually a USB power supply and an SD card to boot your Banana Pi. Also, a network cable and connection is highly recommended to be able to interact with your Banana Pi from another computer via a remote shell using the application SSH (that is covered in the next chapter).

You might also want to actually see something on a display. Then, you will need to connect your Banana Pi via HDMI, composite, or LVDS to an external screen. It is recommended that you use an HDMI Version 1.4 cable since lower versions can possibly cause issues.

Besides inputting data using a remote shell, you can directly connect an USB keyboard and mouse to your Banana Pi via the USB ports.

After completing the required tasks in the upcoming recipes, you will be able to boot your Banana Pi.
Installation and Setup

The following picture shows a USB power supply, a Banana Pro, and a Micro SD card.

Getting ready

The following components are required for this recipe:

- Banana Pi
- SD card (minimum class 4; class 10 is recommended)
- USB power supply (5V 2A recommended)
- A computer with an SD card reader/writer (to write the image to the SD card)

Furthermore, you are going to need an Internet connection to download a Linux distribution or Android.

A few optional but highly recommended components are:

- Connection to a display (via HDMI or composite)
- Network connection via Ethernet
- USB keyboard and mouse

You can acquire these items from various retailers. All items shown in the previous two pictures were bought from an online retailer that is known for originally selling books. However, the Banana Pi and the other products can be acquired from a large number of retailers. It is recommended to get a USB power supply with 2000mA (2A) output.
To download an operating system for Banana Pi, follow these steps:

1. Download an image of your desired operating system. We are going to download Android and Raspbian from the official LeMaker image files website: http://www.lemaker.org/resources/9-38/image_files.html.

 The following screenshot shows the LeMaker website where you can download the official images:

 ![Image Files](image.png)

 ![Image Files](image.png)

 ![Image Files](image.png)

 ![Image Files](image.png)

2. If you are clicking on one of the mirrors (such as Google Drive, Dropbox, and so on), you will be redirected to the equivalent file-hosting service. From there, you are actually able to download the archive file.

3. Once your archive containing the image is downloaded, you are ready to unpack the downloaded archive, which we will do in the upcoming recipes.

See also

- LeMaker image files. This is the official location for operating systems by the manufacturer of the Banana Pi—http://www.lemaker.org/portal.php?mod=list&catid=4

- The Banana Pi / Arch Linux / Customized Distribution article on Ryad's blog. This is a customized Arch Linux distribution provided by the author, including a lot of features such as the LXDE desktop environment and enabled hardware acceleration—http://blog.eldajani.net/banana-pi-arch-linux-customized-distribution/
Installation and Setup

Setting up the SD card on Windows

This recipe will explain how to set up the SD card using a Windows operating system.

Getting ready

To prepare your image and the SD card on Windows, you will usually need the following software ingredients:

- A downloaded image from the previous recipe
- 7-Zip
- SD Formatter
- Win32 Disk Imager to write Linux-based operating systems
- PhoenixCard to write the Android operating system

The upcoming screenshots are showing image files for the Banana Pro. If you are using the Banana Pi, make sure to download and burn the image files for the Banana Pi.

How to do it...

In the upcoming steps, we will unpack the archive containing the operating system image for the Banana Pi and write the image to the SD card:

1. Open the downloaded archive with 7-Zip. The following screenshot shows the 7-Zip application opening a compressed .tgz archive:
2. Unpack the archive to a directory until you get a file with the file extension `.img`. If it is `.tgz` or `.tar.gz` file, you will need to unpack the archive twice. The following screenshot shows the final image file with the file extension `.img` and the unpacked and compressed `.tgz` archive:

![Unpacked archive screenshot](image)

3. Create a backup of the contents of the SD card as everything on the SD card is going to be erased unrecoverably.

4. Open SD Formatter and check the disk letter (E: \ in the following screenshot).

![SD Formatter screenshot](image)
Installation and Setup

5. Choose **Option** to open the **Option Setting** window and choose:
 - FORMAT TYPE: FULL (Erase)
 - FORMAT SIZE ADJUSTMENT: ON

6. When everything is configured correctly, check again to see whether you are using the correct disk and click **Format** to start the formatting process.

Writing an Android image to the SD card on Windows

In the following steps, we are writing an Android image to the SD card using Windows:

1. Execute **PhoenixCard.exe**.
2. Choose the Android image file by clicking on **Img File**.
3. Choose the write mode **Startup** and click on **Format to Normal**.
4. You will see a message, that the formatting was successful.
5. After the formatting, click on **Burn** while leaving the write mode as **Startup**. After a few minutes, your SD card should be ready to boot up Android on the Banana Pi.

The following screenshot shows the PhoenixCard application where the image has been successfully written:
Now you can insert the SD card into your Banana Pi and power it up. After the booting process, you will see the Android operating system.

Writing a Linux distribution image to the SD card on Windows

The following steps explain how to write a Linux-based distribution to the SD card on Windows:

1. Format the SD card using SD Formatter, which we covered in the previous section.
2. Open the Win32 Disk Imager.
3. Choose the image file by clicking on the directory button.
4. Check whether you are going to write to the correct disk and then click on Write.

The next screenshot shows the writing operation of Win32 Disk Imager:

Once the burning process is done, you are ready to insert the freshly prepared SD card containing your Linux operating system into the Banana Pi and boot it up for the first time.

How it works...

Some images are archived using Linux archive formats, which Windows may be unable to unpack natively. Therefore, it might be necessary to install a tool which is capable of unpacking the archive. In this recipe, we use 7-Zip to unpack the archives, which is open source software and is easy to use. Some images are also available as ZIP files, which can also be unpacked using 7-Zip or Windows Explorer. To extract the image from a ZIP file using the Windows Explorer, right-click on the ZIP file and select **Extract all**.

Linux archives usually have to be unpacked twice. Firstly, to uncompress the archive (.tar.gz or .tgz) and secondly, to unpack the actual tar archive (which is used to collect files into one uncompressed file). On Linux, you will be able to unpack the packed archives, and unpack the compressed archives with one command.
After unpacking the image file and formatting your SD card, you need software to burn the image to the SD card. For Android, you will need the software PhoenixCard, for any other image based on Linux, the software Win32 Disk Imager is required.

See also

- SD Formatter is free downloadable software by the SD Association to reformat SD cards efficiently and safely. You can get it for the Windows platform at https://www.sdcard.org/downloads/formatter_4/
- PhoenixCard is a specialized tool used to write Android images to the SD card. You can get it for the Windows platform at https://drive.google.com/file/d/0B_VynIqhAcB7NTg2UkRDdHRWX2s/edit?usp=sharing or alternatively at http://download.eldajani.net/bananapi/phoenixcard.zip
- Win32 Disk Imager is an open source tool we use to write the operating system images to SD cards. You can get it for the Windows platform at http://sourceforge.net/projects/win32diskimager/

Setting up the SD card on Linux

This recipe will explain how to set up the SD card using a Linux-based operating system. On Linux computers, you usually will not need any special software to uncompress archives or write the image to an SD card. To do these tasks, you usually need the command-line tools tar and dd that are preinstalled on almost any Linux distribution by default.

Getting ready

To prepare your image and the SD card on Linux, you will only need the following software ingredients:

- A downloaded image from the Downloading an operating system for the Banana Pi recipe
- The dd program
- The tar program including gzip support
- Optionally, the fdisk program
How to do it...

The following steps are required to unpack the image archive and write the image to the SD card:

1. Unpack the downloaded .tar.gz or .tgz archive using the following command:
 $ tar -xzvf Raspbian_For_BananaPi_v1412.tgz

2. If you have downloaded a .zip file, you use the following command:
 $ unzip Raspbian_For_BananaPi_v1412.zip

3. Determine how your SD card is recognized by the system. You can check the correct path of your SD card by using the following command:
 $ sudo fdisk -l

 To determine the correct device, you can compare the results before and after you plug in the SD card.

 The commands used in the next steps assume that your SD card is recognized as /dev/mmcblk0.

4. Make a backup of the contents on your SD card.

5. Unmount all partitions of the SD card, if any partition is mounted:
 $ sudo umount /dev/mmcblk0*

6. Write the image to the SD card:
 $ sudo dd if=Raspbian_For_BananaPi_v1412.img of=/dev/mmcblk0 bs=1M

 The writing process takes a few minutes.

7. On some systems, the SD card is automatically mounted after the writing process. Unmount the partitions of the SD card again:
 $ sudo umount /dev/mmcblk0*

When the writing process is finished, you can eject your SD card and put it into the SD slot of your Banana Pi.
How it works...

On Linux, you also need to unpack an image file and write the image to the SD card. Luckily, these tasks are much quicker and more easily done on the command line and you usually do not need to install additional software.

In fact, to unpack the image, you need the `tar` command and to write an image to the SD card you need the `dd` (disk dump) command. The tool `tar` is a program to pack or unpack archive files. The tool `dd` is a utility to convert and copy files from a source (the input file—the `if` parameter) to a destination (the output file—the `of` parameter). In contrast to a normal file copy, the actual order of the bytes is preserved.

The `dd` command is executed with root privileges (by using the prefix command `sudo`) to use the image file as input, the SD card as output, and to read/write with a block size (the `bs` parameter) of one megabyte. That block size value is a safe choice when writing images to or reading from SD cards. You can also try a block size value of `4M`, which results in a faster but possibly unsuccessful writing process.

You do not need to format the SD card before issuing the `dd` command as `dd` also writes the whole partition information directly to the SD card.

The output parameter has to be the whole SD card (`/dev/mmcblk0` in our previous example). Make sure not to accidentally write to a partition of the SD card. This means do not use `/dev/mmcblk0p1` or the like.

Moreover, depending on your computer, the SD card may be recognized as `/dev/sdX` and not `/dev/mmcblk0`. Use the `fdisk -l` command to determine the correct device file as mentioned in this recipe.

The `dd` command will take some time. If you want to check the progress, you can issue the following command in another shell:

```
$ sudo pkill -USR1 -n -x dd
```

This will output the current status on the running `dd` job.

See also

- Type in the `man dd` command into a shell to show the manual page of `dd`:

  ```
  $ man dd
  ```

- Type in the `man tar` command into a shell to show the manual page of `tar`:

  ```
  $ man tar
  ```

- Type in the `man fdisk` command into a shell to show the manual page of `fdisk`:

  ```
  $ man fdisk
  ```
Booting up and shutting down the Banana Pi

This recipe will explain how to boot up and shut down the Banana Pi. As the Banana Pi is a real computer, these tasks are as equally important as tasks on your desktop computer. The booting process starts the Linux kernel and several important services. The shutting down stops them accordingly and does not power off the Banana Pi until all data is synchronized with the SD card or external components correctly.

Getting ready

To boot your device, you need the following ingredients:

- A wired up Banana Pi
- A prepared SD card with an operating system

How to do it...

We are going to boot up and shut down the Banana Pi.

Booting up

Do the following steps to boot up your Banana Pi:

1. Attach the Ethernet cable to your local network.
2. Connect your Banana Pi to a display.
3. Plug in an USB keyboard and mouse.
4. Insert the SD card to your device.
5. Power your Banana Pi by plugging in the USB power cable.

The following screenshot shows a new Android installation on the Banana Pi after a successful boot:
Installation and Setup

The next screenshot shows the desktop of Raspbian after a successful boot:

Shutting down Android
To shut down Android, press and hold down the Power key of the Banana Pi.

Shutting down Linux
To shut down your Linux-based distribution, you either use the `shutdown` command or do it via the desktop environment (in case of Raspbian, it is called LXDE). For the latter method, these are the steps:

1. Click on the LXDE icon in the lower-left corner.
2. Click on Logout.
3. Click on Shutdown in the upcoming window.

To shut down your operating system via the shell, type in the following command:

```
$ sudo shutdown -h now
```
How it works...

When you have prepared the SD card successfully, you can finally boot up your Banana Pi with your desired operating system.

The boot sequence should initiate immediately. You will see blinking LEDs. If only the red LED is lit, you probably made a mistake when writing the image to the SD card or the SD card is defective.

If you powered off the device previously, you may need to press and hold the Power key to restart the booting of your device. You will see the boot messages, if you connected your Banana Pi to a display. When the boot has finished, you are welcomed by your operating system for the first time.

If you are using the wired Ethernet network interface on Android, make sure to enable Use Ethernet in the Android settings under Wireless & Networks | More.

On Linux, you can shut down the device via the shell. If you are on the desktop, you can access the shell via an application called Terminal (or LXTerminal in case of Raspbian).

The `shutdown` command expects a mode parameter (-h, that is, halt in this case) and a time (now). If you want to reboot your device, you can use the mode -r (reboot). As the `shutdown` command requires root privileges, we are executing the `shutdown` command with the prefix command `sudo`. This will issue the next command—`shutdown`—to be executed with root privileges. You will have to enter the password of the user. On most of the Banana Pi distributions, the default passwords for the default user is `bananapi`.

Alternatively, you can also power off or reboot your Banana Pi via the LXDE menu or the appropriate commands. The following are the commands for power off and reboot respectively:

```bash
$ sudo poweroff
$ sudo reboot
```

See also

- For the manual page of the `shutdown` command, use:
  ```bash
  $ man shutdown
  ```
- Refer to Wikipedia for the article on the `sudo` command at https://en.wikipedia.org/wiki/Sudo
Where to buy this book
You can buy Banana Pi Cookbook from the Packt Publishing website.
Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and most internet book retailers.
Click here for ordering and shipping details.